• 제목/요약/키워드: PFC2D

검색결과 119건 처리시간 0.023초

대심도 지하공동에 발생하는 암반의 팽창 및 스폴링 현상 모델링 (Modeling of rock dilation and spalling in an underground opening at depth)

  • 조남각;이용주
    • 한국터널지하공간학회 논문집
    • /
    • 제12권1호
    • /
    • pp.31-41
    • /
    • 2010
  • 본 연구에서는 실험 및 수치해석적인 접근방법을 통하여 대심도 과지압 구간에서 발생하는 암반의 스폴링(spalling) 및 팽창모드에 대한 모델링 기법을 연구하였다. 이에 대한 실험적 접근 방법으로서 축 방향 압축을 받는 직사각형 인공암석보(beam)에 4점 휨 시험을 결합한 축방향 압축 휨 시험을 수행하여 대심도 지하공간의 응력모드와 유사한 조건 하에서의 암석의 균열 팽창 및 스폴링 과정을 고찰하였다. 또한, 수치해석적 접근방법으로서 기존의 연속체 해석으로는 모사하기 힘든 암석의 균열과정 및 팽창특성을 개별 입자해석 프로그램인 PFC2D를 이용하여 모델링 하였다. 본 연구 결과 휨 실험에서 구한 팽창시점은 스폴링에 요구되는 응력수준을 평가하는데 중요한 지표가 됨을 알 수 있었으며, 또한 수치해석 결과도 유사한 결과를 모사할 수 있음을 보여주었다.

입자결합모델을 이용한 동적콘관입시험(DCPT)의 수치해석 모델링에 관한 연구 (A Study on Numerical Modeling of Dynamic CPT using Particle Flow Code)

  • 유광호;이창수;최준성
    • 한국도로학회논문집
    • /
    • 제16권2호
    • /
    • pp.43-52
    • /
    • 2014
  • PURPOSES : To solve problems in current compaction control DCPT(Dynamic Cone Penetrometer Test), highly correlated with various testing methods, simple, and economic is being applied. However, it、s hard to utilize DCPT results due to the few numerical analyses for DCPT have been performed and the lack of data accumulation. Therefore, this study tried to verify the validation of numerical modeling for DCPT by comparing and analyzing the results of numerical analyses with field tests. METHODS: The ground elastic modulus and PR(Penetration Rate) value were estimated by using PFC(Particle Flow Code) 3D program based on the discrete element method. Those values were compared and analyzed with the result of field tests. Also, back analysis was conducted to describe ground elastic modulus of field tests. RESULTS : Relative errors of PR value between the numerical analyses and field tests were calculated to be comparatively low. Also, the relationship between elastic modulus and PR value turned out to be similar. CONCLUSIONS : Numerical modeling of DCPT is considered to be suitable for describing field tests by carrying out numerical analysis using PFC 3D program.

Investigation of the model scale and particle size effects on the point load index and tensile strength of concrete using particle flow code

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Hedayat, Ahmadreza;Marji, Mohammad Fatehi
    • Structural Engineering and Mechanics
    • /
    • 제66권4호
    • /
    • pp.445-452
    • /
    • 2018
  • In this paper the effects of particle size and model scale of concrete have been investigated on point load index, tensile strength, and the failure processes using a PFC2D numerical modeling study. Circular and semi-circular specimens of concrete were numerically modeled using the same particle size, 0.27 mm, but with different model diameters of 75 mm, 54 mm, 25 mm, and 12.5 mm. In addition, circular and semi-circular models with the diameter of 27 mm and particle sizes of 0.27 mm, 0.47 mm, 0.67 mm, 0.87 mm, 1.07 mm, and 1.27 mm were simulated to determine whether they can match the experimental observations from point load and Brazilian tests. The numerical modeling results show that the failure patterns are influenced by the model scale and particle size, as expected. Both Is(50) and Brazilian tensile strength values increased as the model diameter and particle sizes increased. The ratio of Brazilian tensile strength to Is(50) showed a reduction as the particle size increased but did not change with the increase in the model scale.

Simulating the influence of pore shape on the Brazilian tensile strength of concrete specimens using PFC2D

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Marji, Mohammad Fatehi
    • Computers and Concrete
    • /
    • 제22권5호
    • /
    • pp.469-479
    • /
    • 2018
  • The Brazilian tensile strength of concrete samples is a key parameter in fracture mechanics since it may significantly change the quality of concrete materials and their mechanical behaviors. It is well known that porosity is one of the most often used physical indices to predict concrete mechanical properties. In the present work the influence of porosity shape on concrete tensile strength characteristics is studied, using a bonded particle model. Firstly numerical model was calibrated by Brazilian experimental results and uniaxial test out puts. Secondly, Brazilian models consisting various pore shapes were simulated and numerically tested at a constant speed of 0.016 mm/s. The results show that pore shape has important effects on the failure pattern. It is shown that the pore shape may play an important role in the cracks initiation and propagation during the loading process which in turn influence on the tensile strength of the concrete samples. It has also been shown that the pore size mainly affects the ratio of uniaxial compressive strength to that of the tensile one in the simulated material samples.

공동을 포함하는 횡등방성 절리암반 모델의 압축 파괴거동 (Compressive Fracture Behaviors of Transversely Isotropic Jointed Rock Model with an Opening)

  • 사공명;김세철;유재호;박두희;이준석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.58-63
    • /
    • 2009
  • Biaxial compression test was conducted on a transversely isotropic synthetic jointed rock model for the understanding of the fracture behaviors of a sedimentary or metamorphic rocks with well developed bedding or foliation in uni-direction. The joint angles employed for the model are 30, 45, and 60 degrees to the horizontal, and the synthetic rock mass was made of early strength cement. From the biaxial compression test, initiation propagation of tensile cracks at norm to the joint angle was found. The propagated tensile cracks eventually developed rock blocks, which was dislodged from the rock mass. Furthermore, the propagation process of the tensile cracks varies with joint angle: lower joint angle model shows more stable and progressive tensile crack propagation. The experiment results were validated from the simulation by using discrete element method PFC 2D. From the simulation, as has been observed from the test, a rock mass with lower joint angle produces wider damage region and rock block by tensile cracks. In addition, a rock model with lower joint angle shows a progressive tensile cracks generation around the opening from the investigation of the interacted tensile cracks.

  • PDF

Numerical simulation of shear mechanism of concrete specimens containing two coplanar flaws under biaxial loading

  • Sarfarazi, Vahab;Haeri, Hadi;Bagheri, Kourosh
    • Smart Structures and Systems
    • /
    • 제22권4호
    • /
    • pp.459-468
    • /
    • 2018
  • In this paper, the effect of non-persistent joints was determined on the behavior of concrete specimens subjected to biaxial loading through numerical modeling using particle flow code in two dimensions (PFC2D). Firstly, a numerical model was calibrated by uniaxial, Brazilian and triaxial experimental results to ensure the conformity of the simulated numerical model's response. Secondly, sixteen rectangular models with dimension of 100 mm by 100 mm were developed. Each model contains two non-persistent joints with lengths of 40 mm and 20 mm, respectively. The angularity of the larger joint changes from $30^{\circ}$ to $90^{\circ}$. In each configuration, the small joint angularity changes from $0^{\circ}$ to $90^{\circ}$ in $30^{\circ}$ increments. All of the models were under confining stress of 1 MPa. By using of the biaxial test configuration, the failure process was visually observed. Discrete element simulations demonstrated that macro shear fractures in models are because of microscopic tensile breakage of a large number of bonded discs. The failure pattern in Rock Bridge is mostly affected by joint overlapping whereas the biaxial strength is closely related to the failure pattern.

글로리 홀 채광법에서 광체의 낙하메커니즘을 통한 수갱 안전설계 연구 (Numerical Study on the Design of Vertical Shaft based on the Falling Mechanism of Ore Particles in Glory Hole Mining Method)

  • 최성웅;김재동
    • 산업기술연구
    • /
    • 제30권A호
    • /
    • pp.17-23
    • /
    • 2010
  • Recently, a large number of open-pit mines are planning to change their mining method to underground types because the environmental concerns and legal regulations are increased with a rise in the standard of living. The K silica mine, which is one of them and located in Kyunggi province, is planning the establishment of a vertical shaft which will be used for ore-pass channel in their new glory hole mining method. This vertical shaft will be designed to join with a horizontal gangway excavated from the ground level. In this new mining system, the excavated ore particles will be stored inside a shaft and transported out with a help of a conveyor belt. Therefore the hang-up of ore particles in a shaft, the control of gate at the bottom of a shaft, the installation of dog-leg at the gate should be investigated identically. In this study, the PFC-2D code which is one of the discrete element numerical methods has been applied to simulate the particle flow mechanism in a shaft, and the optimum mine design has been proposed to maximize the productivity and to minimize the system damage.

  • PDF

대심도 암반특성의 모델링 및 해석에 대한 고찰 (A Study on Modeling and Analysis of Rock Characteristics at Depth)

  • 조남각;신성호;정용진;송한찬
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.591-604
    • /
    • 2009
  • This paper presents some important issues in modeling rock behaviour around an underground opening at depth which characterized as stress-induced fractural failure of rock. Unlike other conventional modeling approaches, stress-induced rock failure is highly complex process due to its own heterogeneous and discrete natures. Because of this complexity, many researchers has been struggled to mimic such processes as close as possible to reality with various approaches in both analytical, and numerical approaches for past few decades. Such approaches which are based on continuum mechanics, analytical fracture mechanics, and DEM(Discrete Element Method) were explored in this paper, and fundamental shortcomings for each approaches were illustrated here. In addition, DEM approach using $PFC^{2D}$(Particle Flow Code) was also implemented and illuminated in this paper and discuss the improvement and considerations for the future research.

  • PDF

암반사면의 절리빈도 특성에 따른 프리스플리팅 발파공법의 적용성 연구 (A Study on Applicability of Pre-splitting Blasting Method According to Joint Frequency Characteristics in Rock Slope)

  • 김신;이승중;최성웅
    • 화약ㆍ발파
    • /
    • 제28권2호
    • /
    • pp.1-16
    • /
    • 2010
  • 본 연구에서는 암반사면형성 작업시 최종벽면에 적용된 프리스플리팅(pre-splitting) 발파공법의 발파효과와 관련하여 발파 후 벽면의 암반손상이 장약된 폭약의 폭력 보다는 암반 내에 발달된 불연속면의 발달 형태에 따라 더 큰 영향을 보일 수 있음을 규명하였다. 이를 위하여 불연속면을 대표할 수 있는 절리에 대한 조사를 통해 발파 후 벽면 암반의 절리군 분포양상을 4가지 Case로 분류하고, 파쇄도 분석 영상처리시스템을 통해 벽면에 나타나는 암반블록의 크기 빈도를 비교 분석함으로써 벽면의 암반손상도를 파악하였다. 절리군이 1개 이하로 발달하는 경우, 분석된 블록의 크기 중 2,000mm 이상 되는 부분이 42%를 차지하여 프리스플리팅 발파공법의 효과를 뚜렷이 확인할 수 있었으며, 2~3개의 절리군이 일방향으로 발달하는 경우와 교차되면서 발달하는 경우, 블록의 크기는 1,000~2,000mm 사이에 각각 43.6% 및 35.8%의 빈도로 분포하는 것으로 나타나 프리스플리팅 발파공법에 의한 발파효율이 다소 떨어지는 양상을 보였다. 그러나 3개 이상의 절리군이 불규칙하게 발달하는 경우에는 블록의 크기가 250~500mm 사이에 35%의 빈도로 분포하고 1,000mm 이상의 크기에 대해서는 거의 나타나지 않는 양상을 보였다. 따라서 이러한 경우 프리스플리팅 발파공법에 의한 발파 효과는 거의 없이 일반적인 발파가 이루어졌다고 볼 수 있었다. 또한 PFC2D에 의한 발파수치해석결과, 암반 내부로의 손상영역 발생은 본 발파보다는 프리스플리팅 발파공법에 의해 직접적인 영향을 받을 수 있음을 확인하였으며, 따라서 향후 사면 형성을 위한 프리스플리팅 발파공법을 적용할 경우에는 사전 지표지질조사를 시행하여 절리를 비롯한 불연속면과 관련된 사항을 충분히 파악할 필요가 있으며, 시공진행에 따라 예상보다 많은 절리군이 나타날 경우에는 프리스플리팅 발파공법의 설계 조정이 필요할 것으로 판단된다.

A new suggestion for determining 2D porosities in DEM studies

  • Wang, Zhijie;Ruiken, Axel;Jacobs, Felix;Ziegler, Martin
    • Geomechanics and Engineering
    • /
    • 제7권6호
    • /
    • pp.665-678
    • /
    • 2014
  • In discrete element modeling, 2D software has been widely used in order to gain further insights into the fundamental mechanisms with less computational time. The porosities used in 2D DEM studies should be determined with appropriate approaches based on 3D laboratory porosities. This paper summarizes the main approaches for converting porosities from 3D to 2D for DEM studies and theoretical evaluations show that none of the current approaches can be widely used in dealing with soil mechanical problems. Therefore, a parabolic equation and a criterion have been suggested for the determination of 2D porosities in this paper. Moreover, a case study has been used to validate that the 2D porosity obtained from the above suggestion to be rational with both the realistic contact force distribution in the specimen and the good agreement of the DEM simulation results of direct shear tests with the corresponding experimental data. Therefore, the parabolic equation and the criterion are suggested for the determination of 2D porosities in a wide range of polydisperse particle systems, especially in dealing with soil mechanical problems.