• Title/Summary/Keyword: PET tray

Search Result 15, Processing Time 0.031 seconds

Quality Evaluation of Minimally Processed Lettuce (Lactuca sativa L.) According to Degree of Head Formation (결구 차이에 따른 양상추 신선편이 제품의 품질 비교)

  • Youn, Aye-Ree;Kwon, Ki-Hyun;Kim, Byeong-Sam;Cha, Hwan-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.460-465
    • /
    • 2008
  • This study examined the effect of head formation on the quality maintenance of minimally processed lettuce (Lactuca sativa L.) samples. The fresh-cut lettuce samples were packed in $20{\times}15{\times}5$ cm polypropylene+polyethylene terephthalate tray, and were then stored at $4^{circ}C$ for up to 8 days. According to the results, the sample with 100% head formation had lower sugar, minerals (Ca, Na, Fe, Mg, K), and chlorophyll contents compared to the sample with 70% head formation. The 70% head formed lettuce had higher vitamin C content at 3.30 mg/100 g, whereas the 85% and 100% formed samples had lower levels of 2.61 and 2.10 mg/100 g, respectively. The polyphenol oxidase (PPO) activity of the 70% formed lettuce was 240 unit/g, while the 100% formed sample had almost 2-fold higher activity. However, the 100% formed lettuce had greater firmness than all other samples. Overall, among the fresh-cut lettuces, the sample with 70% head formation showed more positive effects in terms of quality maintenance.

Quality Characteristics of Small Package Kimchi according to Packing Material and Storage Temperature (포장재와 저장온도에 따른 소포장 김치의 품질특성)

  • Park, Hye-Young;Ahn, Ji-A;Seo, Hae-Jung;Choi, Hye-Sun
    • Korean journal of food and cookery science
    • /
    • v.27 no.1
    • /
    • pp.63-73
    • /
    • 2011
  • Cabbage (Baechu) Kimchi in its truncated form was placed in four different packing materials, Ny/PE/LLDP, OPP/AL/PE, PP and PET, and quality changes were observed during storage. Changes in pH and total acidity showed an x-shaped cross-curve as pH decreased and total acidity increased during storage. PP tray showed the slowest change at $5^{\circ}C$ with time. The pH was initially 6.25, but decreased to 4.12~4.16 at 20 days, and total acidity showed a 4 to 4.8-fold increase after 20 days of storage compared to the initial value. During storage at $5^{\circ}C$, total bacterial count and lactic acid bacterial count rapidly increased after 4 days. The total bacterial quantity decreased after a period of time and there were differences according to packaging material; OPP/AL/PE packaging showed the most dramatic decrease. Change in microbial count mostly followed a similar pattern to that of total acidity for all packaging materials. Changes in the color of Kimchi liquid, when examined by color index in $L{\cdot}b$/a form, rapidly decreased over time, similar to pH. Small Ny/PE/PP and OPP/AL/PE packages of Kimchi were examined for changes in free volume inside the packaging. After 13 days of storage at $5^{\circ}C$, the volume was 243 mL, but storage at $20^{\circ}C$ resulted in a volume of 372 mL, a more than 1.5-fold increase in free volume. There were changes in the quality characteristics of small package Kimchi according to storage temperature and packaging material, and large changes in pH, total acidity, and microbial count were evident upon storage at $5^{\circ}C$ for 8 days, which was the optimum palatability period. Mostly, PP treatment showed the slowest quality changes upon storage at $5^{\circ}C$. However, due to small package Kimchi's fast consumption system, the appropriate choice of packaging material must consider the product's turnover ratio. Further, the varieties of small package Kimchi should be diversified according to different consumer preferences by offering Kimchi with different maturity levels. Further, since the leading consumer base ranges in age from the teens to thirties, the development of various products targeting such consumers is necessary.

Storage Quality of Sulhyang Strawberries as Affected by High O2 Atmosphere Packaging (고산소 환경기체조절 포장조건에 따른 설향 딸기의 저장 중 품질변화)

  • Lee, Hyun-Hee;Hong, Seok-In;Kim, Dongman
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.191-198
    • /
    • 2013
  • The storage quality of fresh Sulhyang strawberries packaged under modified atmospheres was investigated to examine the effect of high $O_2$ on the fruit. Fresh strawberries were packed into PP trays and top-sealed with PET/PP film. Initial gas compositions inside the packages were varied with air, 40% $O_2$/60% $N_2$, 60% $O_2$/40% $N_2$, and 80% $O_2$/20% $N_2$. Sealed packages in PE film bags with air and perforated PP trays were also used as another treatment and control, respectively. Quality attributes and viable cell counts of pathogenic bacteria were assessed during storage at $5^{\circ}C$ for 12 days. High $O_2$ concentration showed no significant effects on the physicochemical and microbial qualities of strawberries. Fruit packaged in PE film bags with 6-15% $O_2$ and 7-9% $CO_2$ during storage had the lowest viable cell counts of inherent microorganisms among the treatment samples. Growth of pathogenic bacteria was suppressed in perforated packages where molds occurred frequently. In an overall sensory aspect, the PE film packages exhibited higher scores than the others at the end of storage period. The experimental results suggested that gas-permeable film packaging with an appropriate combination of $O_2$ and $CO_2$ rather than gas-barrier tray packaging with an initially high $O_2$ concentration would be suitable for improving the storability of strawberries.

Effects of Various Packaging Materials on the Quality of Heat Treated Lotus Roots during Storage (포장재질에 따른 열처리한 연근의 저장 중 품질변화)

  • Chang, Min-Sun;Park, Miji;Kim, Ji-Gang;Kim, Gun-Hee
    • Food Science and Preservation
    • /
    • v.19 no.6
    • /
    • pp.807-812
    • /
    • 2012
  • This study was investigated the changes in quality of heat treated fresh-cut lotus roots using various packaging materials. Lotus roots were purchased from Daegu, Korea. Lotus roots were washed, peeled and sliced with a sharp ceramic knife. The prepared peeled and sliced lotus roots were dipped for 45 sec in water at $55^{\circ}C$. After air-dried at room temperature, the slices were packaged with polyethylene films, polyethylene terephthalate tray+wrapping, vacuum packaging and then stored at $4^{\circ}C$. Changes in weight loss, color, firmness, microorganisms and sensory characteristics were measured. In general, the weight loss rate was increased slightly in vacuum packaged lotus roots. Application of heat treatment delayed browning of lotus roots, and especially vacuum packaged lotus roots were the most lowest ${\Delta}E$ value. However, L and ${\Delta}E$ value of PE film packaged lotus roots were increased highly during storage. The heat treated and vacuum packaging inhibited the growth of microorganisms effectively. The organoleptic quality of vacuum packaged lotus roots showed the best by sensory evaluation.

Effect of different days of postharvest treatment and CO2 concentrations on the quality of 'Seolhyang' strawberry during storage (수확 후 CO2 처리 시기 및 농도에 따른 '설향' 딸기 저장 중 품질변화)

  • Kim, Ji-Gang;Choi, Ji-Woen;Park, Me-Hea
    • Food Science and Preservation
    • /
    • v.23 no.1
    • /
    • pp.12-19
    • /
    • 2016
  • This study was conducted to determine $CO_2$ treatment condition to extend the shelf-life of 'Seolhyang' strawberry. Fresh strawberries with red color on 80% of the fruit surface were harvested. The samples at two different stages (on the $1^{st}$ and $3^{rd}$ day after harvest) were placed in a gas-tight chamber with 0, 5, 15, or 30% $CO_2$ concentration for 3 hours at $4^{\circ}C$. Then, the strawberry samples were immediately packaged in a PET tray and stored at $4^{\circ}C$. The carbon dioxide treatment was effective in maintaining the quality of 'Seolhyang' strawberries treated on the $1^{st}$ day after harvest. These samples had higher firmness, lower redness, softening index, and decay rate compared to samples treated on the $3^{rd}$ day after harvest. Treatment with both 15 and 30% of $CO_2$ concentration on the $1^{st}$ day after harvest induced an increase of firmness of 'Seolhyang' strawberry after the treatment. Samples treated with 15 and 30% $CO_2$ the $1^{st}$ day after harvest maintained quality for 10 days. However, samples treated with $CO_2$ on the $3^{rd}$ day after harvest lost marketability at 10 days of storage. At the atmosphere containing 30% $CO_2$ on the $1^{st}$ day after harvest was most effective in reducing decay rate and fruit softening, and maintaining bright red color of strawberries among different $CO_2$ concentrations. Therefore, a 30% $CO_2$ treatment within one day after harvest can be a practical postharvest technology to extend shelf-life of 'Seolhyang' strawberry.