• Title/Summary/Keyword: PET films

Search Result 289, Processing Time 0.035 seconds

Effect of Transesterification on the Characteristics of PET/PEN Blend Flexible Substrate (상호에스테르 교환반응이 폴리(에틸렌 테레프탈레이트)/폴리(에틸렌 나프탈레이트) 블렌드 유연기관 특성에 미치는 영향)

  • Kim, Jae-Hyun;Kim, Whan-Ki;Yum, Ju-Sun;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.249-253
    • /
    • 2011
  • The effect of morphological development in PET/PEN blending on the physical properties of PET/PEN blend film as a flexible substrate was investigated. The two phase morphology was obtained in PET/PEN blends and it caused the improvement of dimensional stability of PET/PEN blend as a flexible substrate. The two phase morphology and crystallinity of PET/PEN blends could be controlled by the transesterification between PET and PEN during the film processing and this macroscopic structural development affected the dimensional stability of PET/PEN blend films. Better dimensional stability was obtained with increasing crystallinity and decreasing the level of transesterification.

DMAB Effects in Electroless Ni Plating for Flexible Printed Circuit Board (DMAB첨가량에 따른 연성회로기판을 위한 무전해 Ni 도금박막에 관한 연구)

  • Kim, Hyung-Chul;Rha, Sa-Kyun;Lee, Youn-Seoung
    • Korean Journal of Materials Research
    • /
    • v.24 no.11
    • /
    • pp.632-638
    • /
    • 2014
  • We investigated the effects of DMAB (Borane dimethylamine complex, C2H10BN) in electroless Ni-B film with addition of DMAB as reducing agent for electroless Ni plating. The electroless Ni-B films were formed by electroless plating of near neutral pH (pH 6.5 and pH 7) at $50^{\circ}C$. The electroless plated Ni-B films were coated on screen printed Ag pattern/PET (polyethylene terephthalate). According to the increase of DMAB (from 0 to 1 mole), the deposition rate and the grain size of electroless Ni-B film increased and the boron (B) content also increased. In crystallinity of electroless Ni-B films, an amorphization reaction was enhanced in the formation of Ni-B film with an increasing content of DMAB; the Ni-B film with < 1 B at.% had a weak fcc structure with a nano crystalline size, and the Ni-B films with > 5 B at.% had an amorphous structure. In addition, the Ni-B film was selectively grown on the printed Ag paste layer without damage to the PET surface. From this result, we concluded that formation of electroless Ni-B film is possible by a neutral process (~green process) at a low temperature of $50^{\circ}C$.

Influence of Ag Thickness on Electrical and Optical Properties of AZO/Ag/AZO Multi-layer Thin Films by RF Magnetron Sputtering (RF magnetron sputter에 의해 제조된 AZO/Ag/AZO 다층박막의 Ag 두께가 전기적 광학적 특성에 미치는 영향)

  • An Jin-Hyung;Kang Tea-Won;Kim Dong-Won;Kim Sang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.1
    • /
    • pp.9-12
    • /
    • 2006
  • Al-doped ZnO(AZO)/Ag/AZO multi-layer films deposited on PET substrate by RF magnetron sputtering have a much better electrical properties than Al-doped ZnO single-layer films. The multi-layer structure consisted of three layers, AZO/Ag/AZO, the optimum thickness of Ag layers was determined to be $112{\AA}$ for high optical transmittance and good electrical conductivity. With about $1800{\AA}$ thick AZO films, the multi-layer showed a high optical transmittance in the visible range of the spectrum. The electrical and optical properties of AZO/Ag/AZO were changed mainly by thickness of Ag layers. A high quality transparent electrode, having a resistance as low as $6\;W/{\square}$ and a high optical transmittance of 87% at 550 nm, was obtained by controlling Ag deposition parameters.

Effective of bias voltage as electrical property of ZnO:Al transparent conducting films on polyethylen terephthalate substrate (PET 기판 위에 증착된 ZnO:Al 투명 전도막의 전기적 특성에 미치는 바이어스전압의 효과)

  • Park, Byung-Wook;Jessie, Darma;Sung, Youl-Moon;Kwak, Dong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1260-1261
    • /
    • 2008
  • Aluminium doped zinc oxide (ZnO:Al) thin film has emerged as one of the most promising transparent conducting electrode in flat panel displays(FPD) and in photovoltaic devices since it is inexpensive, mechanically stable, and highly resistant to deoxidation. In this paper ZnO:Al thin film was deposited on the polyethylene terephthalate(PET) substrate by the capacitively coupled r.f. magnetron sputtering method. Wide ranges of bias voltage, -30V${\sim}$45V, was applied to the growing films as an additional energy instead of substrate heating, and the effect of positive and negative bias on the film structure and electrical properties of ZnO:Al films was studied and discussed. The results showed that a bias applied to the substrate during sputtering contributed to the improvement of electrical properties of the film by attracting ions and electrons in the plasma to bombard the growing films. These bombardments provided additional energy to the growing ZnO film on the substrate, resulting in significant variations in film structure and electrical properties. The film deposited on the PET substrate at r. f. discharge power of 200 W showed the minimum resistivity of about $2.4{\times}10^{-3}{\Omega}-cm$ and a transmittance of about 87%.

  • PDF

Influence of ZnO Thickness on the Optical and Electrical Properties of GZO/ZnO Bi-layered Films

  • Kim, Sun-Kyung;Kim, So-Young;Kim, Seung-Hong;Jeon, Jae-Hyun;Gong, Tae-Kyung;Kim, Daeil;Yoon, Dae Young;Choi, Dong Yong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.4
    • /
    • pp.198-200
    • /
    • 2014
  • 100 nm thick Ga doped ZnO (GZO) thin films were deposited with RF magnetron sputtering on polyethylene terephthalate (PET) and ZnO coated PET substrate and then the effect of the ZnO thickness on the optical and electrical properties of the GZO films was investigated. GZO single layer films had an optical transmittance of 83.7% in the visible wavelength region and a sheet resistance of $2.41{\Omega}/{\square}$, while the optical and electrical properties of the GZO/ZnO bi-layered films were influenced by the thickness of the ZnO buffer layer. GZO films with a 20 nm thick ZnO buffer layer showed a lower sheet resistance of $1.45{\Omega}/{\square}$ and an optical transmittance of 85.9%. As the thickness of ZnO buffer layer in GZO/ZnO bi-layered films increased, both the conductivity and optical transmittance in the visible wavelength region were increased. Based on the figure of merit (FOM), it can be concluded that the ZnO buffer layer effectively increases the optical and electrical performance of GZO films as a transparent and conducting electrode without intentional substrate heating or a post deposition annealing process.

ITO Films Deposited by Sputter Method of Powder Target at Room Temperature. (상온에서 분말타겟의 스퍼터에 의해 증착된 ITO박막)

  • 김현후;이재형;신성호;신재혁;박광자
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.5
    • /
    • pp.349-355
    • /
    • 2000
  • Indium tin oxide (ITO) thin films have been deposited on PET (polyethylene terephthalate) and glass substrates by a do magnetron sputter method of powder target without heat treatments such as substrate heater and post heat treatment. During the sputtering deposition, sputtering parameters such as sputtering power, working pressure, oxygen gas mixture, film thickness and substrate-target distance are important factors for the high quality of ITO thin films. The structural, electrical and optical properties of as-deposited ITO oxide films are investigated by sputtering power, oxygen partial pressure and films thickness among the several sputtering conditions. XRD patterns of ITO films are affected by sputtering power and pressure. As the power and pressure are increased, (411) and (422) peaks of ITO films are grown strongly. Electrical resistivity is also increased, as the sputtering power and pressure are increased. Transmittance of ITO thin films in the visible light ranges is lowered with an increase of sputtering power and film thickness. Reflectance of ITO films in infra-red region is decreased, as the power and pressure is increased.

  • PDF

Recovery of Polyethylene Telephthalate Monomer over Cu or Mn/γ-Al2O3 Catalysts (Cu, Mn/γ-Al2O3 촉매상에서 polyethylene telephthalate 단량체의 회수 연구)

  • Sim, Jae-Wook;Kim, Seung-Soo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.485-489
    • /
    • 2017
  • Polyethylene terephthalate (PET) has been widely applied in polymers and packaging industries to produce synthetic fibers, films, drink bottles or food containers. Therefore, it has become one of the major plastic wastes. In this article, glycolysis known as one of the main methods in PET chemical recycling was investigated using a glycol to break down the polymer into a monomer. Glycolysis of PET and ethylene glycol was performed in a micro-tubing reactor under various conditions. The effect of glycolysis conditions on the product distribution was investigated at experimental conditions of the EG/PET ratio of 1~4, the reaction time of 15~90 min and the reaction temperature of $250{\sim}325^{\circ}C$ with Mn and Cu catalysts. The highest yield of bis (2-hydroxyethyl) terephthalate monomer (BHET) was obtained as 89.46 wt% under the condition of the reaction temperature of $300^{\circ}C$ and the time of 30 min using 10 wt% $Cu/{\gamma}-Al_2O_3$ catalyst, with the PET and ethylene glycol ratio of 1 : 2.

The Effect of Drawing and Annealing Condition on the Fine Structure of PET Film (연신 및 열처리 조건이 PET film의 미세구조에 미치는 영향)

  • Park, Jong-Bum;Choi, Suk-Chui;Cho, Hyun-Hok
    • Textile Coloration and Finishing
    • /
    • v.3 no.1
    • /
    • pp.8-16
    • /
    • 1991
  • In order to investigate the fine structure of PET films, PET films were stretchd at various draw ratios (2, 3, 4, 5) below $T_g$ ($72^{\circ}C$) and then annealed at various temperatures (125, 150, 175, $200^{\circ}C$) under free-annealed (FA) and taut-annealed (TA) conditions. Such changes as thermal shrinkage, crystallinity, crystallite size, dynamic viscoelasticity and thermal behaviour were measured in relation to the draw ratio and annealing condition.The following results were obtained. 1. Thermal shirinkage increased with increasing annealing temperature and draw ratio, but decreased in case of draw ratio 4 (draw ratio 3 at $200^{\circ}C$) and above it. 2. The degree of crystallinity of FA samples were higher than those of TA samples. 3. Tan 5 of TA samples were less than those of FA samples, and storage moduli (E') and loss moduli (E") of FA samples were less than those of TA samples; moreover, maximum tan '||'&'||' temperature of FA samples were shifted toward higher temperature than those of TA samples. 4. The melting endotherm ($T_m$) and heat of fusion $(\DeltaH)$ of the PET film increased with the draw ratio and annealing temperature; in addition, premelting endotherm ($T_m$) and heat of fusion $(\DeltaH)$ of the local crystallization in the FA samples were larger than those of TA samples. 5. The X-ray diffraction pattern displayed sharp peaks gradually with the draw ratio and annealing temperature. 6. Crystallite sizes of FA samples were larger than those of TA samples.

  • PDF

The improvement of Cu metal film adhesion on polymer substrate by the low-power High-frequency ion thruster

  • Jung Cho;Elena Kralkina;Yoon, Ki-Hyun;Koh, Seok-Keun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.60-60
    • /
    • 2000
  • The adhesion interface formation between copper and poly(ethylene terephthalate)(PET), poly(methyl methacrylate)(PMMA) and Polyimide films was treated using Ion assisted reaction system to sequential sputter deposition by High-Frequency ion source. The ion beam modification system used a new type of low power HF ion thruster for space application as new low thruster electric propulsion system. Low power HF ion thruster with diameter 100mm gives the opportunity to obtain beams of Ar+ with currents 20~150 mA (current density 0.5~3.5 mA/cm2) and energy 200~2500eV at HF power level 10~150 W. Using Ar as a working gas it is possible to obtain thrust within 3~8 mN. Contact angles for untreated films were over 95$^{\circ}$ and 80 for Pet, 10o for PMMA and 12o for PI samples as a condition of ion assisted reaction at the ion dose of 10$\times$1016 ions/cm2, the ion beam potential of 1.2 keV and 4 ml/min for environmental gas flow rate. 900o peel tests yielded values of 15 to 35 for PET, 18 to 40 and 12 to 36 g/min. respectively. High resolution X-ray photoelectron spectrocopy is the Cls region for Cu metal on these polymer substrates showed increases in C=O-O groups for polymide, whereas PET and PMMA treated samples showed only C=O groups with increase the ion dose. Finally, unstable polymer surface can be changed from hydrophobic to hydrophilic formation such as C-O and C=O that were confirmed by the XPS analysis, conclusionally, the ion assisted reaction is very effective tools to attach reactive ion species to form functional groups on C-C bond chains of PET, PMMA and PI.

  • PDF

Hole-Trapping in Iodine-Doped Pentacene Films at Low Temperatures

  • Yun, W.J.;Cho, J.M.;Lee, J.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.70-73
    • /
    • 2006
  • Pentacene films, grown on polyethylene terephthalate (PET) substrates, were doped with Iodine. ESR measurements were made for the films in the temperature range of 100-300 K. Two regimes of doping stages were discernible: a light (intercalation) doping regime and a heavy doping regime. The light doping regime was concluded to be dominated by localized holes that were trapped at low temperatures, which indicated trap states near the valence band edge.

  • PDF