• Title/Summary/Keyword: PENT test

Search Result 5, Processing Time 0.019 seconds

Investigation on the thermal butt fusion performance of the buried high density polyethylene piping in nuclear power plant

  • Kim, Jong-Sung;Oh, Young-Jin;Choi, Sun-Woong;Jang, Changheui
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1142-1153
    • /
    • 2019
  • This paper presents the effect of fusion procedure on the fusion performance of the thermal butt fusion in the safety class III buried HDPE piping per various tests performed, including high speed tensile impact, free bend, blunt notched tensile, notched creep, and PENT tests. The suitability of fusion joints and qualification procedures was evaluated by comparing test results from the base material and buttfusion joints. From the notched tensile test result, it was found that the fused joints have much lower toughness than the base material. It was also identified that the notched tensile test is more desirable than the high speed tensile impact and free bend tests presented in the ASME Code Case N-755-3 as a fusion qualification test method. In addition, with regard to the single low-pressure fusion joint performances, the procedure given by the ISO 21307 was determined to be better that the one specified in the Code Case N-755-3.

Steady Flow Characteristics of Four-Valve Cylinder Heads (실린더헤드 형상에 따른 정상유동 특성)

  • 배충식;정경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.197-205
    • /
    • 1996
  • The flow characteristics of five different 4-valve cylinder heads were investigated in a steady flow rig using laser-Doppler velocimetry. The tumble flow of each head with pentroof combustion chamber was quantified by nondimensional tumble number using a tumble adaptor. The formation of tumbling vortex was examined in an optical single-cylinder engine which has windows for in-cylinder LDV measurements. Tumble vortex ratio was estimated from the tumble flow measurement. The four-valve cylinder heads with pent-roof combustion chamber showed the tumble vortex from the intake process, which was investigated in the steady flow test. The tumble adaptor which converts the tumble into swirl flow was found to be feasible in predicting the tumble flow in the real engine. The tumble strength in the steady flow test coincides with that in the real engine experiment within 15%. It was found that the steady flow test on the four-valve cylinder heads provides the tip for a better design of cylinder head.

  • PDF

Analysis of In-Cylinder Steady Flow for Gasoline Engine Using Particle Tracking Velocimetry (입자추적법을 이용한 가솔린 기관의 실린더 내 정상유동 해석)

  • 정구섭;전충환;장영준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.34-43
    • /
    • 2001
  • Analysis and control of intake charge motion such as swirl and tumble are very important to improve the performance of gasoline engines. In this paper, single frame double exposure PTV(particle tracking velocimetry) is used to investigate intake flow characteristic in a steady flow test rig of gasoline engine with 2-valve and pent-roof combustion chamber. To validate this PTV method, we confirmed reliability of this PTV method using chopper, and coaxial burner experiments. The velocity Held of intake flow is measured with the intake valve lift variation. It is shown that maximum flow velocity is increased and tumble flow become stronger than inverse tumble flow as valve lift increase.

  • PDF

Analysis of in-cylinder steady flow for dual-intake-valve gasoline engine using single-frame particle tracking velocimetry (단일 프레임 입자 추적법을 이용한 흡입 2밸브 가솔린 기관의 실린더 내 정상 유동 해석)

  • Lee, Chang-Sik;Lee, Gi-Hyeong;Im, Gyeong-Su;Jeon, Mun-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.650-658
    • /
    • 1997
  • Analysis and control of intake charge motion such as swirl and tumble are very important factors in improving the gasoline engine performance. In this paper, single-frame PTV (particle tracking velocimetry) is used to investigate intake tumble patterns in a steady flow test rig of gasoline engine with dual-intake-valve and pent-roof combustion chamber. Intake tumble pattern is quantified in accordance with blockage ratio of TIV (tumble intensifying valve) with single- frame PTv.The view of the instantaneous 2-D velocity field gives a realistic understanding of in-cylinder flow field. Thus it is confirmed that PTV is a effective tool in engine design. In conventional port, two tumble structures appear clearly, and the larger one is observed under the exhaust valve side and the smaller is right below the intake valve side. The larger vorticity is observed in TIV port, thus it is concluded that TIV have an effect on intensified tumble motion in cylinder flow.

Development of a Short-term Failure Assessment of High Density Polyethylene Pipe Welds - Application of the Limit Load Analysis - (고밀도 폴리에틸렌 융착부에 대한 단기간 파손 평가법 개발 - 한계하중 적용 -)

  • Ryu, Ho-Wan;Han, Jae-Jun;Kim, Yun-Jae;Kim, Jong-Sung;Kim, Jeong-Hyeon;Jang, Chang-Heui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.405-413
    • /
    • 2015
  • In the US, the number of cases of subterranean water contamination from tritium leaking through a damaged buried nuclear power plant pipe continues to increase, and the degradation of the buried metal piping is emerging as a major issue. A pipe blocked from corrosion and/or degradation can lead to loss of cooling capacity in safety-related piping resulting in critical issues related to the safety and integrity of nuclear power plant operation. The ASME Boiler and Pressure Vessel Codes Committee (BPVC) has recently approved Code Case N-755 that describes the requirements for the use of polyethylene (PE) pipe for the construction of Section III, Division 1 Class 3 buried piping systems for service water applications in nuclear power plants. This paper contains tensile and slow crack growth (SCG) test results for high-density polyethylene (HDPE) pipe welds under the environmental conditions of a nuclear power plant. Based on these tests, the fracture surface of the PENT specimen was analyzed, and the fracture mechanisms of each fracture area were determined. Finally, by using 3D finite element analysis, limit loads of HDPE related to premature failure were verified.