• Title/Summary/Keyword: PEN/TLCP blend

Search Result 6, Processing Time 0.026 seconds

Study on the Isothermal Crystallization Behaviors of PEN/TLCP Blends

  • Park, Jong-Ryul;Yoon, Doo-Soo;Lee, Eung-Jae;Bang, Moon-Soo;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.51 no.1
    • /
    • pp.56-62
    • /
    • 2016
  • The isothermal crystallization behaviors of blends of poly(ethylene naphthalate) (PEN) and a thermotropic liquid crystalline polymer (TLCP) were investigated by differential scanning calorimetry (DSC) as functions of crystallization temperature and blend composition. Avrami analyses were applied to obtain information on the crystal growth geometry and the factors controlling the rate of crystallization. The crystallization kinetics of the PEN/TLCP blends followed the Avrami equation up to a high degree of crystallization, regardless of crystallization temperature. The calculated Avrami exponents for PEN/TLCP revealed three-dimensional growth of the crystalline region in each blend. The crystallization rate of each blend increased as the crystallization temperature decreased, and decreased as the TLCP content increased. The crystallization of PEN in the blend was affected by the addition of TLCP, which acts as a nucleating agent.

Properties of Liquid Crystalline Polyester/Poly(ethylene 2,6-naphthalate) Blend Fibers (액정 폴리에스테르/PEN 블렌드 섬유의 성질)

  • Kim, Won;Kim, Young-Yong;Son, Jung-Sun;Yun, Doo-Soo;Han, Chul;Choi, Jae-Kon;Jo, Byung-Wook
    • Elastomers and Composites
    • /
    • v.37 no.4
    • /
    • pp.244-257
    • /
    • 2002
  • A thermotropic liquid crystalline polymer(TLCP) which has flexible butylene/hexylene spacers in the main chain and a triad aromatic ester type mesogenic unit containing a naphthyl group was prepared by solution polycondensation. The in-situ composites based on poly(ethylene 2,6-naphthalate) (PEN) and a thermotropic liquid crystalline polymer(TLCP) were prepared and melt spun at different TLCP contents and different draw ratios to produce monofilaments. Blends of the TLCP with PEN were investigated in terms of thermal, mechanical properties and morphology. The TLCP synthesized showed nematic mesophasic behavior and its transition temperature to isotropic melt from mesophase was 249℃. The blends showed well dispersed TLCP phases in the PEN matrix without macroscopic phase separation. Inclusion of TLCP in the blends decreased the cold crystallization temperature of PEN in the blend, therefore, the TLCP acts as a nucleating agent in the blend and showed good interfacial adhesion between the dispersed LCP phases and PEN matrix with domain sizes 40~50 nm in diameter and well developed fibrillation in the monofilaments. The TLCP acted effectively as a reinforcing material in the PEN matrix at the 10wt% level, it led to an increase of initial modulus up to 270% and tensile strength by 235%, while the elongation rate increasing with higher draw ratios.

Effects of Annealing on Structure and Properties of TLCP/PEN/PET Ternary Blend Fibers

  • Kim, Jun-Young;Seo, Eun-Su;Kim, Seong-Hun;Takeshi Kikutani
    • Macromolecular Research
    • /
    • v.11 no.1
    • /
    • pp.62-68
    • /
    • 2003
  • Thermotropic liquid crystalline polymer (TLCP)/poly(ethylene 2,6-naphthalate) (PEN)/poly(ethylene terephthalate) (PET) ternary blends were prepared by melt blending, and were melt-spun to fibers at various spinning speeds in an effort to improve fiber performance and processability. Structure and property relationship of TLCP/PEN/PET ternary blend fibers and effects of annealing on those were investigated. The mechanical properties of ternary blend fibers could be significantly improved by annealing, which were attributed to the development of more ordered crystallites and the formation of more perfect crystalline structures. TLCP/PEN/PET ternary blend fibers that annealed at 18$0^{\circ}C$ for 2 h, exhibited the highest values of tensile strength and modulus. The double melting behaviors observed in the annealed ternary blend fibers depended on annealing temperature and time, which might be caused by different lamellae thickness distribution as a result of the melting-reorganization process during the DSC scans.

Properties of TLCP/PEN/PET ternary blend fibers with annealing condition (열처리 조건에 따른 TLCP/PEN/PET삼성분계 블렌드 섬유의 특성)

  • 서은수;김준영;김성훈
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.227-230
    • /
    • 2003
  • 열방성 액정고분자 (Thermotropic liquid crystal polymer, TLCP)는 초고강도 섬유로의 응용가능성을 갖고 있어 많은 관심이 집중되고 있으며, 액정고분자의 고강도와 고탄성, 우수한 내열성과 내화학성, 가공시 성형수축률 및 선팽창계수가 작기 때문에 고성능 섬유 및 엔지니어링 플라스틱, 그리고 고분자 복합재료 등 다양한 분야에 응용되고 있다 [1]. 또한 범용성 열가소성 수지와 TLCP와의 용융블렌드는 고분자 복합재료의 강도 및 탄성의 향상뿐만 아니라 우수한 가공성 및 고성능 발현이 가능하기 때문에 현재 많은 연구가 진행되고 있다 [2]. (중략)

  • PDF

On the Composites of poly(ethylene 2,6-naphthalate) with a Thermotropic Block Copolyester(I) (열방성 블록 코폴리에스테르와 poly(ethylene 2,6-naphthalate)의 복합재료 연구(I))

  • Choi, Jae Kon
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.454-462
    • /
    • 1997
  • Thermotropic block copolyester(TLCP-b-PBN) based on poly(tetramethylene 2,6-(naphthaloyldioxy)dibenzoates)(TLCP) and poly(butylene 2,6-naphthalate)(PBN) was synthesized by solution polycondensation and melt-blended with poly(ethylene 2,6-naphthalate)(PEN) for in-situ composites. The TLCP domains showed nematic behavior in melt. The composition of block copolymer was determined from $^1H-NMR$ spectroscopy. The DSC thermogram of block copolymer revealed the presence of two major melting transitions, corresponding to the separete melting of PBN and TLCP domains. The glass transition temperature(Tg) of the PEN in the blends decreased with increasing the content of TLCP-b-PBN and the TLCP-b-PBN acted as a nucleating agent for the matrix polymers. In the 20% TLCP-b-PBN blend, well oriented TLCP fibriles were observed at temperature above the melting point of the PEN by optical microscopy. By scanning electron micrographs of cryogenically fractured surfaces of extruded blends, the TLCp domains were found to be finely and uniformely dispersed in 0.15 to $0.2{\mu}m$ size. Interfacial adhesion between the TLCP and matrix polymer was seemed to be good. Under certain condition TLCP formed a fiver structure in the PEN matrix, with thin oriented TLCP fibril in the skin region and spherical TLCP domains in the core.

  • PDF

Thermotropic Liquid Crystal Polymer or Silica Nano-particle Filled Polyester Composite Fibers

  • Kim, Seong-Hun;Kim, Jun-Young;Ahn, Seon-Hoon
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.65-66
    • /
    • 2003
  • Ternary blend fibers (TBFs) based on melt blends of PEN, PET, and TLCP were prepared by melt blending and spinning to achieve high performance fibers. The reinforcement effect and the TLCP fibrillar structure resulted in the improvement of mechanical properties for TBFs. Molecular orientation was an important factor in determining the tensile strength and modulus of TBFs. Another part of this research is silica nano-particle filled PEN composites were melt-blended to improve mechanical and physicalproperties, and processability. The tensile modulus and strength were improved adding silica nano-particles to the PEN. The decreased melt viscosity by the fumed silica resulted in the improvement of the processability. The fumed silica may act as a nucleating agent in the PEN matrix.

  • PDF