• Title/Summary/Keyword: PEGylation

Search Result 32, Processing Time 0.484 seconds

Development of Hair Keratin Protein to Accelerate Oral Mucosal Regeneration

  • So-Yeon Kim
    • Journal of dental hygiene science
    • /
    • v.23 no.4
    • /
    • pp.369-377
    • /
    • 2023
  • Background: In this study, we investigated the potential use of keratin for oral tissue regeneration. Keratin is well-known for its effectiveness in skin regeneration by promoting keratinization and enhancing the elasticity and activity of fibroblasts. Because of its structural stability, high storability, biocompatibility, and safety in humans, existing research has predominantly focused on its role in skin wound healing. Herein, we propose using keratin proteins as biocompatible materials for dental applications. Methods: To assess the suitability of alpha-keratin protein as a substrate for cell culture, keratin was extracted from human hair via PEGylation. Viabilities of primary human gingival fibroblasts (HGFs) and human oral keratinocytes (HOKs) were assessed. Fluorescence immunostaining and migration assays were conducted using a fluorescence microscope and confocal laser scanning microscope. Wound healing and migration assays were performed using automated software to analyze the experimental readout and gap closure rate. Results: We confirmed the extraction of alpha-keratin and formation of the PEG-g-keratin complex. Treatment of HGFs with keratin protein at a concentration of 5 mg/ml promoted proliferation and maintained cell viability in the test group compared to the control group. HOKs treated with 5 mg/ml keratin exhibited a slight decrease in cell proliferation and activity after 48 hours compared to the untreated group, followed by an increase after 72 hours. Wound healing and migration assays revealed rapid closure of the area covered by HOKs over time following keratin treatment. Additionally, HOKs exhibited changes in cell morphology and increased the expression of the mesenchymal marker vimentin. Conclusion: Our study demonstrated the potential of hair keratin for soft tissue regeneration, with potential future applications in clinical settings for wound healing.

Synthesis and Biological Evaluation of Water-Soluble Oleanolic Acid Derivatives for use as Melanogenesis Inhibitors (멜라닌 생합성 억제제로서 수용성 Oleanolic Acid 유도체의 합성 및 활성 평가)

  • An, Hyun-Jin;Yoon, Young-kyung;Lee, Jae-Duck;Jeong, Noh-Hee
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.653-659
    • /
    • 2020
  • This study was focused on the synthesis of methoxy polyethylene glycol-oleanolic acid ester (mPEG-OA derivative) and investigation of its water solubility and anti-melanogenic effects. mPEG-OA derivative was identified by 1H and 13C NMR and FT-IR spectroscopic measurements. The water solubilities of mPEG-OA derivative and OA were found to be 13 and 0.013 mg/mL and that of mPEG-OA was found to be 1000-fold higher than that of OA. The effects of mPEG-OA derivative and OA on cell viability were measured using B16F10 melanoma cells. The viability of cells treated with mPEG-OA derivative (250 μM) increased 4-fold compared to that of cells treated with OA (62.5 μM). At mPEG-OA derivative and OA concentrations where the cell viability was unaffected, the inhibitory effect of mPEG-OA derivative and OA on the melanogenesis in B16F10 melanoma cells were 36 and 35% at 50 and 10 μM, respectively. The expression level of microphthalmia-associated transcription (MITF) was also reduced in B16F10 melanoma cells treated with mPEG-OA and OA. Overall, mPEG-OA derivative showed excellent water solubility and inhibitory effects of the melanogenesis, which could be used as a potential formulation for use in whitening functional cosmetic material.