• Title/Summary/Keyword: PEDOT(PEDOT)

Search Result 351, Processing Time 0.024 seconds

Effect of Solvent Doping and Post-Treatment on the Characteristics of PEDOT : PSS Conducting Polymer (솔벤트 도핑과 후처리 공정에 따른 전도성 고분자 PEDOT : PSS의 특성 변화)

  • Kim, Jin Hee;Seo, Yoon Kyung;Han, Joo Won;Oh, Ji Yoon;Kim, Yong Hyun
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.275-279
    • /
    • 2015
  • Poly(3,4-ethylenedioxythiophene) : poly(styrenesulfonate) (PEDOT : PSS) has attracted a great deal of attention as a transparent conductive material for organic solar cells or organic light-emitting diodes due to its high electrical conductivity, optical transparency, and excellent mechanical flexibility. It is well known that a solvent doping for PEDOT : PSS thin-films significantly increases the conductivity of films. In this paper, the effect of various kinds of solvent doping and post-treatment on the electrical and structural properties of PEDOT : PSS thin-films is investigated. The solvent doping greatly increases the conductivity of PEDOT : PSS thin-films up to 884 S/cm. A further enhancement of the conductivity of PEDOT : PSS thin-films is achieved by the solvent post-treatment which raises the conductivity up to 1131 S/cm. The enhancement is mainly caused by the depletion of insulating PSS and forming conducting PEDOT-rich granular networks. Strong optical absorption peaks at the wavelength of 225 nm of PEDOT : PSS thin-films indicate the depletion of insulating PSS by post-treatment. We believe that the solvent post-treatment is a promising method to achieve highly conductive transparent PEDOT : PSS thin-films for applications in efficient, low-cost and flexible organic devices.

Electrochromic Property of a Conductive Polymer Film Fabricated with Vapor Phase Polymerization (증기중합으로 제조된 전도성 고분자 박막의 전기 변색 특성)

  • Lee, Ji-Yea;Kim, Yu-Na;Kim, Eun-Kyoung
    • Membrane Journal
    • /
    • v.20 no.1
    • /
    • pp.8-12
    • /
    • 2010
  • Poly(3,4-ethylenedioxythiophene) (PEDOT), which has the highest stability in conducting polymer was employed to electrochromic (EC) film and studied about electrochromic properties according to the film fabrication method. PEDOT films were coated by two different methods, electropolymerization (EP) and vapor phase polymerization (VPP). Both of PEDOT films showed dark blue color at dedoped neutral state. Spectroelectrochemistry, switching ability and stability of the devices were investigated by UV-Vis Spectrophotometer and Cyclic voltammetry. Surface morphologies of the PEDOT VPP film at oxidized and reduced state were obtained by AFM. The average surface roughness of the PEDOT-VPP film was 50 nm and more homogeneous than that of the PEDOT-EP. The EC property from the PEDOT-VPP film was improved compared to that of the PEDOT-EP film, to show a response time of 1.5 sec, transmittancechange of 49%, and coloration efficiency of 402.

Solvent Effects on the Charge Transport Behavior in Poly(3,4-ethylenedioxythiophene) Synthesized with Iron (III) -p-toluenesulfonate (Iron(III)-p-toluenesulfonate로 합성된 Poly(3,4-ethylenedioxythiophene)의 전하전달현상에 미치는 유기용매의 영향)

  • Park, Chang-Mo;Kim, Tae-Young;Kim, Won-Jung;Kim, Yun-Sang;Suh, Kwang-S
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.363-367
    • /
    • 2005
  • The effects of organic solvent on the charge transport behavior of poly (3,4-ethylenedioxythioph one)/p-toluene-sulfonate(PEDOT-OTs) are investigated. The use of different organic solvents during the oxidative chemical polymerization of 3,4-ethylenedioxythiophene (EDOT) with Iron(III) -tosylate can greatly vary the DC conductivity of PEDOT-OTs along with molecular structure and doping concentration. For example, PEDOT-OTs prepared from methanol shows the conductivity of 19.5 S/cm, which is an increase by a factor of $10^8$ compared to PEDOT-OTa prepared from acetone. From the X-ray diffraction (XRD) experiments, it was found that PEDOT-OTs with ketone is amorphous state, while PEDOT-OTs with alcoholic solvent shows the better defined crystalline structure in which the charge transport along and between the PEDOT chains are promoted. Chemical analysis employing X-ray photoelectron spectroscopy (XPS) revealed that the doping concentration of PEDOT-OTs with alcoholic solvent is much higher than that of PEDOT-OTs with ketones. It is proposed that the interactions between the organic solvent and doping anion can cause the variation in doping concentration and, therefore, result in the PEDOT-OTs of different conductivities and chain structures.

Effect of Imidazole and Surfactant on the Opto-Electrical Properties of PEDOT Thin Films via Vapor Phase Polymerization (이미다졸과 계면활성제가 기상중합법으로 제조된 PEDOT 박막의 광-전기적 특성에 미치는 영향)

  • Khadka, Roshan;Yim, Jin-Heong
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.461-467
    • /
    • 2015
  • This paper reports the combined effects of the triblock copolymer surfactant poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) (PEG-PPG-PEG) and imidazole on the opto-electrical and mechanical properties of poly(3,4-ethylenedioxythiophene) (PEDOT)-based thin films prepared via vapor phase polymerization (VPP) using ferric p-toluenesulfonate as a catalyst. Various PEDOT-based thin films were synthesized using PEG-PPG-PEG and imidazole alone and in combination to compare and correlate their effects on film properties. The improved conductivity of the PEDOT films was higher than $1300S{\cdot}cm^{-1}$ when the surfactant and imidazole were used together. The PEG-PPG-PEG chain length was also varied to identify the best conditions for the VPP-based preparation of PEDOT thin films.

Effect of Solvent Annealing on the Characteristics of PEDOT:PSS as a Ammonia Gas Sensor Film (용매열처리에 따른 PEDOT:PSS 암모니아 가스 감지막 특성 변화)

  • Noh, Wang Gyu;Yeom, Se-Hyuk;Lee, Wanghoon;Shin, Han Jae;Kye, Ji Won;Kwak, Giseop;Kim, Se Hyun;Ryu, Si Ok;Han, Dong Cheul
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.96-100
    • /
    • 2017
  • Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been extensively studied as the active material in ammonia gas sensor because of its fast response time, high conductivity and environmental stability. It is well known that a post annealing process for organic devices based on PEDOT:PSS significantly increases the device performance. In this study, we propose the solvent annealing of PEDOT:PSS and investigated its effects. As a results, post solvent annealing on PEDOT:PSS lead to the surface chemical and physical properties change. These changes result in improved conductivity of the PEDOT:PSS. In additional, ammonia sensitivity of solvent annealed PEDOT:PSS become higher than pristine polymer film. The enhancement is mainly caused by the depletion of gas barrier PSS and structural re-forming PEDOT networks. We believe that the post solvent annealing is a promising method to achieve highly sensitivity PEDOT:PSS films for applications in efficient, low-cost and flexible ammonia gas sensor.

Study on the Improvement of Physicochemical Properties of PEDOT-Metal Oxide Composite Thin Film by Vapor Phase Polymerization (기상중합법으로 제조된 Poly(3,4-ethylenedioxythiophene)(PEDOT)-금속산화물 복합 박막의 물리화학적 물성 향상에 관한 연구)

  • Nam, Mi-Rae;Yim, Jin-Heong
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.599-605
    • /
    • 2012
  • The physicochemical properties such as surface hardness, solvent mechanical wear resistance, and resistance to scratch properties of poly(3,4-ethylenedioxythiophene) (PEDOT) thin film prepared by vapor phase polymerization (VPP) was effectively improved by post-treatment of various metal alkoxide sol solutions. Metal oxide layer derived from sol-gel process of metal alkoxide was generated on the PEDOT thin film layer by VPP, resulting in improving mechanical properties of the conductive thin films without any deterioration of their original surface resistance. Several kinds of silicone and titanium alkoxide derivatives with various functional groups were used as metal alkoxide sol sources. Among them, PEDOT-metal oxide composite thin film derived tetraethyl orthosilicate showed the best performance in the terms of surface resistance, transmittance, and various physicochemical properties. The effect of metal alkoxide content in washing solution, oxidant content and drying temperature have been investigated in order to optimize the various properties of PEDOT-metal oxide composite thin film.

The Enhancement of Conductivity for PEDOT:PSS (PEDOT:PSS의 전도성 향상)

  • Im, Gyeong-A;Jeong, Seong-Hun;Lee, Seung-Hun;Kim, Byeong-Jun;Gang, Yong-Cheol;Kim, Do-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.58-59
    • /
    • 2014
  • 유연성이 우수한 전도성 고분자 Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)의 전기적 특성향상에 대한 연구를 위해, 본 연구에서는 PEDOT:PSS 박막에 전기장을 수직방향으로 인가하여 PEDOT 과 PSS 의 상분리를 형성시킨 후 기존의 공정 방식과는 다른 dynamic etching 공정 방식을 적용하여 PEDOT:PSS 박막의 표면에 존재하는 PSS를 효과적으로 제거함으로써 전기장을 인가하지 않은 PEDOT:PSS 전도성 대비 최대 50%까지 전도성을 향상 시켰을 뿐만 아니라 표면 상태 역시 RMS 2.28 nm로 smooth한 표면을 얻을 수 있었다.

  • PDF

Electrochromic Pattern Formation by Photo Cross-linking Reaction of PEDOT Side Chains

  • Kim, Jeong-Hun;Kim, Yu-Na;Kim, Eun-Kyoung
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.791-796
    • /
    • 2009
  • An electrochemically and photochemically polymerizable monomer, 2-((2,3-dihydrothieno[3,4-b] [1,4]dioxin-2-yl)methoxy)ethyl methacrylate (EDOT-EMA), was explored for patterning of poly(3,4-ethylenedioxythiophene) (PEDOT) via side chain cross-linking. The polymer from EDOT-EMA was deposited electrochemically to produce polymeric EDOT (PEDOT-EMA), which was directly photo-patterned by UV light as the side EMA groups of PEDOT-EMA were polymerized to give cross-linked EMA (PEDOT-PEMA). Absorption and FTIR studies of the UV-exposed film (PEDOT-PEMA) indicated that the photo-patterning mainly originated from the photo cross-linking of the methacrylates in the side-chain. After irradiation of the film, the conductivity of the irradiated area decreased from $5.6{\times}10^{-3}$ S/cm to $7.2{\times}10^{-4}$ S/cm, possibly due to bending of the conductive PEDOT channel as a result of the side chain cross-linking. The patterned film was applied to a solid state electrochromic (EC) cell to obtain micro-patterned EC cells with lines up to 5 ${\mu}m$ wide.

Improvement of Piezoelectric Performance of the CNT/PVDF Composite Film by Enhancing Conductivity of the PEDOT:PSS Electrodes (PEDOT:PSS 전극의 전도도향상에 의한 CNT/PVDF 복합막의 압전성능 개선)

  • Lim, Young-Taek;Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.11
    • /
    • pp.716-719
    • /
    • 2016
  • In this paper, we fabricated flexible CNT/PVDF (carbon nanotube / polyvinylidene fluoride) piezoelectric composite device with flexible poly(3,4-ethylenedioxythiophene) : polystyrene sulfonate (PEDOT:PSS) conducting polymer electrode using spray coating method. We tried to improve the piezoelectric performance from the CNT/PVDF composite film by enhancing electrical conductivity of the PEDOT:PSS electrodes. Electrical conductivity of the PEDOT:PSS electrode was enhanced by dipping it into the EG (ethylene glycol) solvent. Changes of chemical composition of the PEDOT:PSS electrode were analyzed with the dipping time by XPS (x-ray photoelectron spectroscopy) in terms of oxygen (O1s). Finally, Piezoelectric performances such as output voltage and current were measured with the dipping time. We found that enhanced electrical conductivity of the PEDOT:PSS electrodes resulted in improvement of the piezoelectric performance of the CNT/PVDF films.

CuO 나노 입자의 PEDOT:PSS 첨가를 통한 유기 태양전지 특성 향상 연구

  • O, Sang-Hun;Jeong, Ju-Hye;Kim, Hyeon-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.388-388
    • /
    • 2011
  • 본 연구에서는 CuO 나노 입자를 poly(3,4,-ethylene dioxythiophene):polystyrene sulfonic acid (PEDOT:PSS) 버퍼층에 첨가하여 정공의 이동도를 높임으로서 poly(3-hexylthiophene) (P3HT) as the electron donor and (6.6) phenyl-C61-butyric acid methyl ester (PCBM) 기반의 유기 태양전지를 제작하였다. 일반적으로 PEDOT:PSS 박막은 높은 광 투과율과 상대적으로 우수한 전기전도도를 지닌 p-type의 유기 반도체 물질로써 유기 태양전지의 홀 전도막으로 널리 사용되어지고 있다. 하지만 낮은 홀이동도로 인하여 전달된 정공이 전극까지 전달되는데에 한계점이 있어 본 연구에서 이를 극복하기 위한 방안으로 p-type의 무기 반도체 물질인 CuO 나노 입자를 PEDOT:PSS 박막내에 첨가하여 홀 이동도를 높이고자 하였다. CuO 나노 입자를 PEDOT:PSS 용액에 각각 5, 10, 15, 20mg/ml 의 농도로 첨가하여 유기 태양 전지의 버퍼층으로 사용을 하였다. 이렇게 제작되어진 각각의 PEDOT:PSS 박막과 CuO 나노 입자가 첨가된 PEDOT:PSS 박막의 전기적, 광학적 및 표면 분석을 통하여 CuO 나노 입자가 PEODT:PSS 박막에 미치는 영향을 조사하였고, 이를 통하여 P3HT:PCBM 기반의 유기 태양전지를 제작하여 전기적 특성 분석을 수행하였다.

  • PDF