• Title/Summary/Keyword: PEALD and PECVD $Al_2O_3$ layers

Search Result 1, Processing Time 0.014 seconds

Interfacial Microstructure and Electrical Properties of $Al_2O_3/Si$ Interface of Mono-crystalline Silicon Solar Cells (단결정 실리콘 태양전지에서 후열처리에 따른 $Al_2O_3/Si$ 계면조직의 특성 변화)

  • Paek, Sin Hye;Kim, In Seob;Cheon, Joo Yong;Chun, Hui Gon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.41-46
    • /
    • 2013
  • Efficient and inexpensive solar cells are necessary for photo-voltaic to be widely adopted for mainstream electricity generation. For this to occur, the recombination losses of charge carriers (i.e. electrons or holes) must be minimized using a surface passivation technique suitable for manufacturing. Recently it has been shown that aluminum oxide thin films are negatively charged dielectrics that provide excellent surface passivation of silicon solar cells to attract positive-charged holes. Especially aluminum oxide thin film is a quite suitable passivation on the rear side of p-type silicon solar cells. This paper, it demonstrate the interfacial microstructure and electrical properties of mono-crystalline silicon surface passivated by $Al_2O_3$ films during firing process as applied for screen-printed solar cells. The first task is a comparison of the interfacial microstructure and chemical bonds of PECVD $Al_2O_3$ and of PEALD $Al_2O_3$ films for the surface passivation of silicon. The second is to study electrical properties of double-stacked layers of PEALD $Al_2O_3$/PECVD SiN films after firing process in the temperature range of $650{\sim}950^{\circ}C$.