• Title/Summary/Keyword: PDMS transfer

Search Result 43, Processing Time 0.033 seconds

Fabrication of Hydrophilic Poly(dimethylsiloxane)with Periodic Wrinkling Surface and Its Application (일정한 주름을 갖는 친수성 PDMS 제작 및 응용)

  • Lee, Dong-Guk;Oh, Chang-Kyu;Yang, Sung-Ho;Han, Seung-Jin;Jeong, Ok-Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.671-675
    • /
    • 2014
  • This paper presents a fabrication of hydrophilic Poly(dimethylsiloxane) (PDMS) with periodic wrinkling surface. The proposed periodic wrinkling surface was fabricated using the sequential processes of typical curing process of PDMS, cutting process, platinum deposition process, and wrinkling transfer process. The surface morphology of the fabricated wrinkling surface was observed by using optical and dynamic atomic force microscopy and discussed. The measured period and amplitude of wrinkling was about $2.2{\mu}m$ and $0.31{\mu}m$, respectively. And, the contact angles of water droplets on the wrinkled surface were measured in order to understand effect of the wrinkling surface on surface modification of hydrophobic PDMS. Our new finding was that the proposed wrinkling surface was hydrophilic and the measured contact angle was about $62^{\circ}$. Moreover, it was found out from the simple cell culture test that the fabricated wrinkling surface was more effective for cell spreading and adhesion than the case of native PDMS substrate.

Fabrication of PDMS Mold by AFM Based Mechanical TNL Patterning (AFM기반 기계적 TNL 패터닝을 통한 PDMS 몰드제작)

  • Jung, Y.J.;Park, J.W.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.831-836
    • /
    • 2013
  • This study demonstrates the process of fabricating patterns using tribonanolithography (TNL),with laboratory-made micro polycrystalline diamond (PCD) tools that are attached to an atomic force microscope (AFM). The various patterns are easily fabricated using mechanical scratching, under various normal loads, using the PCD tool on single crystal silicon, which is the master mold for replication in this study. Then, polydimethylsiloxane (PDMS) replica molds are fabricated using precise pattern transfer processes. The transferred patterns show high dimensional accuracy as compared with those of TNL-processed silicon micro molds. TNL can reduce the need for high cost and complicated apparatuses required for conventional lithography methods. TNL shows great potential in that it allows for the rapid fabrication of duplicated patterns through simple mechanical micromachining on brittle sample surfaces.

PS-b-PDMS와 Amorphous Carbon Layer를 이용하여 Aspect-ratio와 Line-edge 개선에 대한 연구

  • O, Ji-Su;Seong, Da-In;O, Jong-Sik;Yeom, Won-Gyun;Yeom, Geun-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.142-142
    • /
    • 2017
  • High Flory-Huggins interaction parameter (${\chi}$)를 가지는 polystyrene-block-dimethylsiloxane (PS-b-PDMS)는 초미세 패턴 제작과 우수한 defect density, 우수한 edge roughness 특성으로 향상된 패턴을 제공한다는 점에서 반도체 분야에서 많은 연구가 되고 있다. 하지만, PS와 PDMS 사이에 존재하는 큰 surface tension의 차이로 인해 PDMS는 PS와 air 사이에서 segregate되기 때문에 수직배향에 불리하여 high aspect ratio (HAR)을 가지는 cylinder, lamellar 패턴 제작에 있어 큰 어려움을 가진다. 본 연구에서는 이러한 문제를 해결하기 위해, PS-b-PDMS BCP 패턴과 하부 실리콘 기판 사이에 amorphous carbon layer (ACL)를 삽입하여 효과적으로 pattern transfer하는 공정을 연구하였다. 플라즈마를 이용하여 무한대에 가까운 etch selectivity를 가지는 식각 공정을 개발함으로써 낮은 aspect ratio를 가지는 PS-b-PDMS BCP 패턴의 한계점을 극복하였다. Large-x value를 가지는 BCPs를 이용하여도 매우 높은 aspect ratio를 가지면서 동시에 pattern quality를 향상시킬 수 있는 plasma process를 제시하였다.

  • PDF

Fabrication and characterization of the nano- and micro-particles applied dry adhesives (나노 또는 마이크로 입자의 전사를 이용한 건식 접착제의 제조 및 특성 분석)

  • Yu, Min Ji;Vu, Minh Canh;Han, Sukjin;Park, Jae Hong;Kim, Sung-Ryong
    • Journal of Adhesion and Interface
    • /
    • v.20 no.1
    • /
    • pp.23-28
    • /
    • 2019
  • In this study, the micro- and nano-particles were used and their shapes were transferred into the polydimethylsiloxane (PDMS) film to fabricate the dry adhesives and their properties were investigated. The Cu nanoparticles of the sizes of 20 nm, 40 nm and 70 nm and the polymethylmethacrylate (PMMA) beads of the size of $5{\mu}m$ were used to transfer their images and the resultant properties of the dry adhesives were compared. The effects of particle size and materials on the mechanical property, tensile adhesion strength, light transmittance, surface morphology, water contact angle were studied. The dry adhesives obtained from the transfer process of Cu nanoparticles with the size of 20 nm resulted in the enhancement of tensile adhesion strength more than 300% compared to that of the bare PDMS. The formation of nanostructure of large surface area on the surface of the PDMS film by the Cu nanoparticles may responsible for the improvement. This study suggests that the use of nanoparticles during the fabrication of PDMS dry adhesives is easy and effective and could be applied to the fabrication of the medical patch.

Three-Dimensional Nanofabrication with Nanotransfer Printing and Atomic Layer Deposition

  • Kim, Su-Hwan;Han, Gyu-Seok;Han, Gi-Bok;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.87-87
    • /
    • 2010
  • We report a new patterning technique of inorganic materials by using thin-film transfer printing (TFTP) with atomic layer deposition. This method consists of the atomic layer deposition (ALD) of inorganic thin film and a nanotransfer printing (nTP) that is based on a water-mediated transfer process. In the TFTP method, the Al2O3 ALD growth occurs on FTS-coated PDMS stamp without specific chemical species, such as hydroxyl group. The CF3-terminated alkylsiloxane monolayer, which is coated on PDMS stamp, provides a weak adhesion between the deposited Al2O3 and stamp, and promotes the easy and complete release of Al2O3 film from the stamp. And also, the water layer serves as an adhesion layer to provide good conformal contact and form strong covalent bonding between the Al2O3 layer and Si substrate. Thus, the TFTP technique is potentially useful for making nanochannels of various inorganic materials.

  • PDF

One-Touch Type Immunosenging Lab-on-a-chip for Portable Point-of-care System (휴대용 POC 시스템을 위한 원터치형 면역 센싱 랩온어칩)

  • Park, Sin-Wook;Kang, Tae-Ho;Lee, Jun-Hwang;Yoon, Hyun-C.;Yang, Sang-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1424-1429
    • /
    • 2007
  • This paper presents a simple and reliable one-touch type multi-immunosensing lab-on-a-chip (LOC) detecting antibodies as multi-disease markers using electrochemical method suitable for a portable point-of-care system (POCS). The multi-stacked LOC consists of a PDMS space layer for liquids loading, a PDMS valve layer with 50 im in height for the membrane, a PDMS channel layer for the fluid paths, and a glass layer for multi electrodes. For the disposable immunoassay which needs sequential flow control of sample and buffer liquids according to the designed strategies, reliable and easy-controlled on-chip operation mechanisms without any electric power are necessary. The driving forces of sequential liquids transfer are the capillary attraction force and the pneumatic pressure generated by air bladder push. These passive fluid transport mechanisms are suitable for single-use LOC module. Prior to the application of detection of the antibody as a disease marker, the model experiments were performed with anti-DNP antibody and anti-biotin antibody as target analytes. The flow test results demonstrate that we can control the fluid flow easily by using the capillary stop valve and the PDMS check valves. By the model tests, we confirmed that the proposed LOC is easily applicable to the bioanalytic immunosensors using bioelectrocatalysis.

Cost Effective Fabrication of a Triboelectric Energy Harvester Using Soft Lithography (소프트 식각법을 이용한 효율적 제작방식의 마찰전기 에너지 수확소자 개발)

  • Lee, Jun-Young;Sung, Tae-Hoon;Yeo, Jong-Souk
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.4
    • /
    • pp.198-203
    • /
    • 2013
  • Energy harvesting refers to converting ambient energy from our surroundings, which would be otherwise wasted, into useful electrical energy. A triboelectric energy harvester is a self-charged device for harnessing mechanical energy based on a coupled process of contact charging and electrostatic induction. In this research, we demonstrate simple fabrication of prototype triboelectric energy harvester using soft lithography and its electrical characterization. Triboelectric generation occurs between the two micro patterned layers of Au and PDMS. A micro pattern is simply replicated directly from the bottom layer to the top layer using soft-lithography without an extra transfer process. This generator can produce an output voltage of 2 V and output current of 20 nA.

CNT-PDMS Composite Thin-Film Transmitters for Highly Efficient Photoacoustic Energy Conversion

  • Song, Ju Ho;Heo, Jeongmin;Baac, Hyoung Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.297.2-297.2
    • /
    • 2016
  • Photoacoustic generation of ultrasound is an effective approach for development of high-frequency and high-amplitude ultrasound transmitters. This requires an efficient energy converter from optical input to acoustic output. For such photoacoustic conversion, various light-absorbing materials have been used such as metallic coating, dye-doped polymer composite, and nanostructure composite. These transmitters absorb laser pulses with 5-10 ns widths for generation of tens-of-MHz frequency ultrasound. The short optical pulse leads to rapid heating of the irradiated region and therefore fast thermal expansion before significant heat diffusion occurs to the surrounding. In this purpose, nanocomposite thin films containing gold nanoparticles, carbon nanotubes (CNTs), or carbon nanofibers have been recently proposed for high optical absorption, efficient thermoacosutic transfer, and mechanical robustness. These properties are necessary to produce a high-amplitude ultrasonic output under a low-energy optical input. Here, we investigate carbon nanotube (CNT)-polydimethylsiloxane (PDMS) composite transmitters and their nanostructure-originated characteristics enabling extraordinary energy conversion. We explain a thermoelastic energy conversion mechanism within the nanocomposite and examine nanostructures by using a scanning electron microscopy. Then, we measure laser-induced damage threshold of the transmitters against pulsed laser ablation. Particularly, laser-induced damage threshold has been largely overlooked so far in the development of photoacoustic transmitters. Higher damage threshold means that transmitters can withstand optical irradiation with higher laser energy and produce higher pressure output proportional to such optical input. We discuss an optimal design of CNT-PDMS composite transmitter for high-amplitude pressure generation (e.g. focused ultrasound transmitter) useful for therapeutic applications. It is fabricated using a focal structure (spherically concave substrate) that is coated with a CNT-PDMS composite layer. We also introduce some application examples of the high-amplitude focused transmitter based on the CNT-PDMS composite film.

  • PDF

Fabrication of Flexible OTFT Array with Printed Electrodes by using Microcontact and Direct Printing Processes

  • Jo, Jeong-Dai;Lee, Taik-Min;Kim, Dong-Soo;Kim, Kwang-Young;Esashi, Masayoshi;Lee, Eung-Sug
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.155-158
    • /
    • 2007
  • Printed organic thin-film transistor(OTFT) to use as a switching device for an organic light emitting diode(OLED) were fabricated in the microcontact printing and direct printing processes at room temperature. The gate electrodes($5{\mu}m$, $10{\mu}m$, and $20{\mu}m$) of OTFT was fabricated using microcontact printing process, and source/drain electrodes ($W/L=500{\mu}m/5{\mu}m$, $500{\mu}m/10{\mu}m$, and $500{\mu}m/20{\mu}m$) was fabricated using direct printing process with hard poly(dimethylsiloxane)(h-PDMS) stamp. Printed OTFT with dielectric layer was formed using special coating system and organic semiconductor layer was ink-jet printing process. Microcontact printing and direct printing processes using h-PDMS stamp made it possible to fabricate printed OTFT with channel lengths down to $5{\mu}m$, and reduced the process by 20 steps compared with photolithography. As results of measuring he transfer characteristics and output characteristics of OTFT fabricated with the printing process, the field effect characteristic was verified.

  • PDF