• 제목/요약/키워드: PDL-specific protein

검색결과 7건 처리시간 0.017초

cDNA Microarray를 이용한 치주인대세포와 치은섬유아세포의 유전자 발현에 대한 연구 (A Comparative Study of Gene Expression Patterns of Periodontal Ligament Cells and Gingival Fibroblasts using the cDNA Microarray)

  • 전채영;박진우;이재목;서조영
    • Journal of Periodontal and Implant Science
    • /
    • 제34권1호
    • /
    • pp.205-221
    • /
    • 2004
  • Periodontal ligament(PDL) cells have been known as playing an important roles in periodontal regeneration and gingival fibroblasts are also important to periodontal regeneration by forming connective tissue attachment. There were rare studies about the gene expression patterns of PDL cells and gingival fibroblasts, therefore in this study, we tried cDNA microarray-based gene expression monitoring to explain the functional differences of PDL cells and gingival fibroblasts in vivo and to confirm the characteristics of PDL cells. Total RNA were extracted from PDL cells and gingival fibroblasts of same person and same passages, and mRNA were isolated from the total RNA using Oligotex mRNA midi kit(Qiagen) and then fluorescent cDNA probe were prepared. And microarray hybridization were performed. The gene expression patterns of PDL cells and gingival fibroblasts were quite different. About 400 genes were expressed more highly in the PDL cells than gingival fibroblasts and about 300 genes were more highly expressed in the gingival fibroblasts than PDL cells. Compared growth factor- and growth factor receptor-related gene expression patterns of PDL cells with gingival fibroblasts, IGF-2, IGF-2 associated protein, nerve growth factor, placental bone morphogenic protein, neuron-specific growth- associated protein, FGF receptor, EGF receptor-related gene and PDGF receptor were more highly expressed in the PDL cells than gingival fibroblasts. The results of collagen gene expression patterns showed that collagen type I, type III, type VI and type VII were more highly expressed in the PDL cells than gingival fibroblasts, and in the gingival fibroblasts collagen type V, XII were more highly expressed than PDL cells. The results of osteoblast-related gene expression patterns showed that osteoblast specific cysteine-rich protein were more highly expressed in the PDL cells than gingival fibroblasts. The results of cytoskeletal proteins gene expression patterns showed that a-smooth muscle actin, actin binding protein, smooth muscle myosin heavy chain homolog and myosin light chain were more highly expressed in the PDL cells than gingival fibrobalsts, and ${\beta}-actin$, actin-capping protein(${\beta}$ subunit), actin- related protein Arp3(ARP) and myosin class I(myh-1c) were more highly expressed in the gingival fibroblasts than PDL cells. Osteoprotegerin/osteoclastogenesis inhibitory factor(OPG/OCIF) was more highly expressed in the PDL cells than gingival fibroblasts. According to the results of this study, PDL cells and gingival fibroblasts were quite different gene expression patterns though they are the fibroblast which have similar shape. Therefore PDL cells & gingival fibroblasts are heterogeneous populations which represent distinct characteristics. If more studies about genes that were differently expressed in each PDL cells & gingival fibroblasts would be performed in the future, it would be expected that the characteristics of PDL cells would be more clear.

발생중인 생쥐 치아 및 치주조직에서 치주인대-특이 단백질; PDLs22의 발현 (Expression of PDL-specific protein;PDLs22 on the developing mouse tooth and periodontium)

  • 박중원;박병기;김상목;김병옥;박주철
    • Journal of Periodontal and Implant Science
    • /
    • 제32권1호
    • /
    • pp.1-12
    • /
    • 2002
  • The periodontal ligament(PDL) is a unique tissue that is crucial for tooth function. However, little is known of the molecular mechanisms controlling PDL function. PDL-specific protein;PDLs22 had been previously identified as a novel protein isolated from cultured human PDL fibroblasts using subtraction hybridization between human gingival fibroblasts and PDL fibroblasts. The aim of this study was to examine the expression pattern and tissue localization of PDLs22 protein in embryonic and various postnatal stages of developing mouse using immunohistochemical staining. Embryos (E18) and postnatal (P1, P4, P5, P15, P18) were decapitated and the heads were fixed overnight in a freshly prepared solution of 4% paraformaldehyde. Some specimens were decalcified for $2{\sim}4$ weeks in a solution containing 10% of the disodium salt of ethylenediamine-tetraacetic acid (EDTA). Next, tissues were dehydrated, embedded in paraffin and sectioned serially at $6{\mu}m$ in thickness. Polyclonal antiserum raised against PDLs22 peptides, ISNKYLVKRQSRD, were made. The localization of PDLs22 in tissues was detected by polyclonal antibody against PDLs22 by means of immunohistochemical staining. The results were as follows; 1. Expression of PDLs22 protein was not detected in the tooth germ of bud and cap stage. 2. At the late bell stage and root formation stage, strong expression of PDLs22 protein was observed in developing tooth follicle, osteoblast-like cells, and subodontoblastic cells in the tooth pulp, but not in gingival fibroblasts, ameloblasts and odontoblasts of tooth germ 3. In erupted tooth, PDLs22 protein was intensely expressed in PDL and osteoblast-like cells of alveolar bone, but not in gingival fibroblasts, mature osteocytes and adjacent salivary glands. 4. In the developing alveolar bone and mid-palatal suture, expression of PDLs22 protein was seen in undifferentiated mesenchymal cells and osteoblast-like cells of developing mid-palatal suture, but not in mature osteocytes and chondrocytes. These results suggest that PDLs22 protein may play an important role in the differentiation of undifferentiated mesenchymal cells in the bone marrow and PDL cells, which can differentiate into multiple cell types including osteoblasts, cementoblasts, and PDL fibroblasts. However, more researches should be performed to gain a better understanding of the exact function of PDLs22 protein which related to the PDL cell differentiation.

($IL-1{\beta}$), PDGF-BB 그리고 $TGF-{\beta}$가 사람 배양 치주인대 섬유모세포의 PDLs17 mRNA의 발현에 미치는 영향 (The Effect of Interleukin $1-{\beta}$, Platelet Derived Growth Factor-BB and Transforming Growth $Factor-{\beta}$ on the expression of PDLs17 mRNA in the Cultured Human Periodontal Ligament Fibroblasts)

  • 임기정;한경윤;김병옥;임창엽;박주철
    • Journal of Periodontal and Implant Science
    • /
    • 제31권4호
    • /
    • pp.787-801
    • /
    • 2001
  • The molecular mechanisms control the function of PDL(periodonta1 ligament) cells and/or fibroblasts remain unclear. PDLsl7, PDL-specific gene, had previousely identified the cDNA for a novel protein from cultured PDL fibroblasts using subtraction hybridization between gingival fibroblasts and PDL fibroblasts. The purpose of this study was to determine the regulation by growth factors and cytokines on PDLsl7 gene expression in cultured human periodontal ligament cells and observe the immunohistochemical localization of PDLsl7 protein in various tissues of mouse. Primary PDL fibroblasts isolated by scraping the root of the extracted human mandibular third molars. The cells were incubated with various concentration of human recombinant $IL-1{\beta}$, PDGF-BB and TGF\;${\beta}$ for 48h nd 2 weeks. At each time point total RNA was extracted and the levels of transcription ere assessed by reverse transcription-polymerase chain reaction (RT-PCR assay). polyclonal antiserum raised against PDLsl7 peptides, CLSVSYNRSYQINE and SEAVHETDLHDGC, were made, and stained the tooth, periodontium, developing bone, bone marrow and mid-palatal suture of the mouse. The results were as follows. 1. PDLsl7 mRNA levels were increased in response to PDGF (10ng/ml) and $TGF\;{\beta}$(20ng/ml) after treatment of the $IL-1{\beta}$, PDGF-BB and $TGF{\beta}$for 48 h. 2. PDLsl7 was up-regulated only by $TGF{\beta}$(20 ng/ml) after treatment of the $IL-1{\beta}$, PDGF-BB and $TGF\;{\beta}$ for 2 weeks and unchanged by the other stimulants. 3. PDLsl7 was a novel protein coding the 142 amino acid peptides in the ORF and the nucleotide sequences of the obtained cDNA from RT-PCR was exactly same as the nucleotides of the database. 4. Immunohistochemical analysis showed that PDLsl7 is preferentially expressed in the PDL, differentiating osteoblast-like cells and stromal cells of the bone marrow in the adult mouse. 5. The expression of PDLsl7 protein was barely detectable in gingival fibroblasts, hematopoetic cells of the bone marrow and mature osteocytes of the alveolar bone. These results suggest that PDLsl7 might upregulated by PDGF-BB or $TGF{\beta}$ and acts at the initial stage of differentiation when the undifferentiated mesenchymal cells in the bone marrow and PDL differentiate into multiple cell types. However, more research needs to be performed to gain a better understanding of the exact function of PDLsl7 during the differentiation of bone marrow mesenchymal and PDL cells.

  • PDF

Replicative Senescence of Periodontal Fibroblasts Induces the Changes in Gene Expression Pattern

  • Yi, Tac-Ghee;Jun, Ji-Hae;Min, Byung-Moo;Kim, Moon-Kyu;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • 제32권1호
    • /
    • pp.35-43
    • /
    • 2007
  • Tooth loss in elderly is mainly caused by alveolar bone loss via severe periodontitis. Although the severity of periodontitis is known to be affected by age, the aging process or the genetic changes during the aging of periodontal tissue cells are not well characterized. In this study, we investigated the effect of in vitro aging on the change of gene expression pattern in periodontal fibroblasts. Gingival fibroblasts (GF) and periodontal ligament fibroblasts (PDL) were obtained from two young patients and replicative senescence was induced by sequential subcultivation. When more than 90% cells were positively stained with senescence-associated ${\beta},-galactosidase$, those cells were regarded as aged cells. In aged GF and PDL, the level of phosphorylated retinoblastoma (RB) and $p16^{INK4A}$ protein was significantly decreased and increased, respectively. However, the protein level of p53 and p21, well known senescence-inducing genes, did not increase in aged GF and PDL. Although $p27^{Kip1}$ and $p15^{INK4B}$, another cyclin-dependent kinase inhibitors, were reported to be involved in replicative senescence of human cells, they were decreased in aged GF and PDL. Because senescent cells showed flattened and enlarged cell shape and are known to have increased focal adhesion, we examined the protein level of several integrins. Aged GF and PDL showed increased protein level of integrin ${\alpha}2$, ${\alpha}v$, and ${\beta}1$. When the gene expression profiles of actively proliferating young cells and aged cells were compared by cDNA microarray of 3,063 genes and were confirmed by reverse transcription-polymerase chain reaction, 7 genes and 15 genes were significantly and commonly increased and decreased, respectively, in aged GF and PDL. Among them, included are the genes that were known to be involved in the regulation of cell cycle, gene transcription, or integrin signaling. The change of gene expression pattern in GF and PDL was minimally similar to that of oral keratinocyte. These results suggest that $p16^{INK4A}/RB$ might be involved in replicative senescence of periodontal fibroblasts and the change of gene expression profile during aging process is cell type specific.

PDLs22 재조합 단백질의 합성과 평가 (Synthesis and evaluation of PDLs22 recombinant protein)

  • 이경연;최용석;이유진;배현숙;김흥중;조광희;장현선;박주철
    • Journal of Periodontal and Implant Science
    • /
    • 제37권1호
    • /
    • pp.35-44
    • /
    • 2007
  • Periodontal ligament (PDL) is the connective tissue located between the tooth root and alveolar bone. In a previous study, PDLs22 was isolated as a PDL-specific gene by using subtractive hybrid-ization between cultured PDL fibroblasts and gingival fibroblasts. It was also suggested that PDLs22 plays important roles in the development, differentiation and maintenance of periodontal tissues. However, little is known about functional study of PDLs22 using recombinant protein in PDL fibroblast differentiation and periodontium formation. In this study, in order to produce the PDLs22 recombinat protein, PDLs22 expression vector were constructed and expressed its protein in various host cell and temperature conditions. The results were as follows: 1. PDLs22 protein was not strongly expressed In the induction system using pRSET-PDLs22 construct. 2. When the BL21(DE3) pLysS was used as a expression host, PDLS22 protein was strongly ex-pressed in the induction system using pHCEIIBNd-PDLs22 construct. 3. The PDLs22 protein was recognized at a molecular weight of 28 kDa in western blots. 4. Almost of the expressed PDLs22 protein was not soluble and observed like as inclusion body. 5. The protein solubility was not improved after modification of induction time and temperature during PDLs22 protein production. In this study, the system for the PDLs22 protein production was connstructed. However, the re-results suggest that further studies will be needed to produce the considerable amount of PDLs22 re-combinat protein, which can use for the periodontal regeneration.

흰쥐의 치아 맹출과 치간 이개 과정에서 수종의 치주인대 단백질 발현의 변화에 관한 면역 조직화학적 연구 (Immunohistochemical localization of several protein changes in periodontal ligament during tooth eruption and interdental separation of rats)

  • 임성훈;박형수;윤영주;김광원;김흥중;정문진;박주철
    • 대한치과교정학회지
    • /
    • 제34권1호
    • /
    • pp.71-81
    • /
    • 2004
  • 치아의 맹출 과정과 치간이개로 유도된 치아 및 치조골의 흡수 과정에서 치주인대 세포와 치주인대 단백질의 기능을 알아보기 위하여, 발육 중인 흰쥐를 치근 형성 전, 치근 형성 시작과 치근 형성 및 맹출 시기로 구분하여 조직 표본을 제작하고, 또한 성 장 중인 흰쥐를 2주간 치간 이개시켜 조직표본을 제작하였다. 치주인대 섬유모세포에서 특이적으로 발현되며 치주인대의 분화와 성숙에 관여하는 PDLs22단백질과 치아와 치조골의 파괴와 흡수를 조절하는 것으로 알려진 RANKL과 OPG의 발현을 면역 조직화학적으로 연구하였다. PDLs22 단백질은 치근 형성이 시작되면서부터 치낭세포와 골모세포에서 발현되어, 치아가 맹출하는 과정에서도 그 발현이 계속 유지되었으나, 치간이개에 의하여 치주인대가 개조되는 부위에서는 발현이 감소하였다. RANKL은 치근형성 과정에서는 미약한 발현을 나타내었으나, 치아가 맹출하면서 발현이 증대되었으며, 치간이개에 의한 치근과 치조골 흡수과정에서는 치주인대세포, 골모세포, 치수세포 및 파치세포에서 발현이 증대되었다. OPG는 치근이 형성되는 시기에는 강한 발현을 보였으나, 치아가 맹출하면서 발현이 현저히 감소하였고, 치아와 치조골의 흡수가 진행됨에 따라서 발현이 다소 감소하였다.

다양한 단백질과 폴리펩타이드로 코팅된 PLGA 표면과 슈반세포와의 상호관계 (Interaction of Schwann Cells with Various Protein- or Polypeptide-Coated PLGA Surfaces)

  • 박기숙;김수미;김문석;이일우;이종문;이해방;강길선
    • 폴리머
    • /
    • 제30권5호
    • /
    • pp.445-452
    • /
    • 2006
  • 본 연구에서는 슈반세포와 다양한 세포 부착인자로 코팅된 고분자 표면과의 상호관계에 대해 연구하였다. 세포 접착인자로 알려진 피브로넥틴, 피브리노겐, 라미닌, 비트로넥틴, 폴리-D-라이신 및 폴리-L-라이신을 PLGA 필름에 코팅하고 물 접촉각 측정과 ESCA 분석을 실시해 표면특성을 평가하구 접착인자로 코팅하거나 하지 않은 PLGA 필름의 표면에 슈반세포를 배양한 후 세포 계수와 SEM 관찰을 통해 세포 부착과 성장을 알아보았다. 세포 계수 결과에서 세포 부착은 PLGA 표면의 단백질 흡착과 관련 있음을 확인할 수 있었으며, 세포의 성장은 배양액의 우태아혈청 함량의 영향을 받는 것으로 나타났다. 이러한 결과를 통해 슈반세포의 접착과 성장이 특정한 세포 접착인자에 의해 영향을 받음을 알 수 있었다. 본 실험의 결과를 통해 조직공학적 신경 재생에 응용하기 위한 신경유도관의 개발에서 세포의 부착과 성장을 향상시키기 위해서는 세포의 종류 및 배양조건에 따라 신경유도관이 적절한 표면환경을 제공해야 함이 필수적임을 알 수 있었다.