• Title/Summary/Keyword: PDL fibroblasts

Search Result 36, Processing Time 0.029 seconds

The Effects Of Calcified Nodule Formation On Co-Cultre Of Periodontal Ligament Cells And Gingival Fibroblasts (치주인대세포와 치은 섬유아세포의 혼합배양이 석회화 결정형성에 미치는 영향)

  • In, Young-Mi;Park, Joon-Bong;Lee, Man-Sup;Kwon, Youg-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.1
    • /
    • pp.89-102
    • /
    • 1996
  • The goal of periodontal therapy is to regenerate the loss of periodontal attachment appratus. Current theories suggest the cells of the periodontium have the capacity, when appropriately triggered, to actively participate in restoring connective tissues, including mineralized tissues. This study was performed to define the hard tissue regeneration effect of periodontal ligament(PDL) cells in vitro and the effect of rate of the composition in gingival fibroblasts(GF) on the hard tissue regeneration capacity of PDL cells. For this study, Cell growth rate, alkaline phosphatase(Al.Pase) levels and the ability to produce mineralized nodules in co-culture of PDL cells and GF were examined. The results were as follows : 1. At 7 and 15 days, Cell growth of co-culture of PDL and GF(50 : 50) was greater than that of PDL cells or GF alone(P>0.05). 2. Measurements of ALPase levels indicated that PDL cells had significantly higher activity when compared with that of co-culture groups and GF only(p<0.05). And, ALPase activity in 10 days was higher than that of 7 days(P>0.05) 3. The tendency of formation of the mineralized nodule were observed dose-depend pattern of PDL cells. There was statistically significant difference among group 1(PDL 100%), 2(PDL 70% : GF 30%), and 3(PDL 50% : GF 50%)(P<0.01). But, there was no difference among group 3, 4(PDL 30% GF 70%), and 5(GF 100%). 4. Also, the number of nodule was greater in co-culture of PDL 70% and GF 30% than in culture of PDL 70%(P<0.05) From the above results, it is assumed that the co-culture of PDL cells and GF stimulates the cell growth, which is not that of PDL cells but GF. And, the activity of ALPase depends on the ratio of PDL cells, and ALPase may relate to the initial phase of nodule formation. Also, it is thought that the calcified nodule formation principally depends on PDL cells, is inhibited by GF, and affected by cell density.

  • PDF

Studies on Root Restoration: Embedding Titanium and Cultured Periodontal Ligament Fibroblasts into the Intradentinal Cavities in Dogs.

  • Yamamoto, T.;Hirata, M.;Iwarnatsu, Y.;Tadatomo, Y.;Shimonishi, M.;Murakami, Y.;Nagaoka, S.;Higuchi, S.;Sato, H.;Kanehira, M.;Kindaichi, K.;Komatsu, M.
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.568.1-568
    • /
    • 2001
  • The purpose of our study is new formation of periodontal ligament (PDL) around titanium implants. In this study, we investigated histologically whether cultured periodontal ligament fibroblasts (CPLFs) would form new PDL on titanium implants in beagle dogs. PDL fibroblasts were obtained from upper premolars of dogs and cultured in ${\alpha}-MEM$ supplemented with 10% FBS. Some CPLFs were cultured on glass-beads-sandblasted titanium specimen. Artificial intradentinal cavities were prepared through alveolar bone to dentin of lower premolars.(omitted)

  • PDF

EFFECT OF ROOT-END FILLING MATERIALS ON THE ACTIVITY OF CULTURED PERIODONTAL LIGAMENT FIBROBLASTS AND OSTEOBLASTS (수종 치근단 역충전 재료가 배양된 치주인대 섬유모세포 및 뼈모세포의 활성에 미치는 영향)

  • Yang, Mi-Young;Choi, Gi-Woon;Min, Byung-Soon;Park, Sang-Jin;Choi, Ho-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.76-87
    • /
    • 1999
  • The effect of retrograde root-end filling materials(IRM, Super-EBA, Vitremer, MTA) on human periodontal ligament fibroblasts and osteoblasts was observed. The cell activities were evaluated by MTT assay, protein assay and alkaline phosphatase activity examination. The results as follows ; 1. After 24hrs culture, both E1 cells & PDL fibroblast adding root-end filling materials were suppressed cell activities but after 48hrs, cell activities were recovered. 2. Cell activity was lowest in Vitremer followed by IRM, MTA, Super-EBA. 3. Cell activity depression by Vitremer was not concerned with pH changes. 4. Protein synthesis by root-end filling materials were not significant difference in Both E1 cell & PDL fibroblasts but protein synthesis were a little increased by Super-EBA. 5. Alkaline phosphatase activity was increased in E1 cell by Super-EBA & MTA but was not significant differences in E1 cell by IRM & Vitremer. Alkaline phosphatase activity was a little depressed in PDL fibroblast by Vitremer. This findings suggest that these root-end filling materials may have important roles in promotion of PDL healing and consequently may be useful for clinical application in apical surgery.

  • PDF

Skeletal myogenic differentiation of human periodontal ligament stromal cells isolated from orthodontically extracted premolars

  • Song, Minjung;Kim, Hana;Choi, Yoonjeong;Kim, Kyungho;Chung, Chooryung
    • The korean journal of orthodontics
    • /
    • v.42 no.5
    • /
    • pp.249-254
    • /
    • 2012
  • Objective: To investigate the stem cell-like characteristics of human periodontal ligament (PDL) stromal cells outgrown from orthodontically extracted premolars and to evaluate the potential for myogenic differentiation. Methods: PDL stromal cells were obtained from extracted premolars by using the outgrowth method. Cell morphological features, self-replication capability, and the presence of cell-surface markers, along with osteogenic, adipogenic, and chondrogenic differentiation, were confirmed. In addition, myogenic differentiation was induced by the use of 5-aza-2'-deoxycytidine (5-Aza) for DNA demethylation. Results: PDL stromal cells showed growth patterns and morphological features similar to those of fibroblasts. In contrast, the proliferation rates of premolar PDL stromal cells were similar to those of bone marrow and adipogenic stem cells. PDL stromal cells expressed surface markers of human mesenchymal stem cells (i.e., CD90 and CD105), but not those of hematopoietic stem cells (i.e., CD31 and CD34). PDL stromal cells were differentiated into osteogenic, adipogenic, and chondrogenic lineages. Myotube structures were induced in PDL stromal cells after 5-Aza pretreatment, but not in the absence of 5-Aza pretreatment. Conclusions: PDL stromal cells isolated from extracted premolars can potentially be a good source of postnatal stem cells for oromaxillofacial regeneration in bone and muscle.

BIOCHEMICAL CHARACTERISTICS OF HUMAN PERIODONTAL LIGAMENT CELLS IN VITRO (치주인대세포(齒周靭帶細胞)의 생화학적(生化學的) 특이성(特異性)에 대(對)한 연구(硏究))

  • Cho, Soung-Wook;Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.22 no.1
    • /
    • pp.273-283
    • /
    • 1992
  • To find out the differences between periodontal ligament cells (PDL cells) and gingival fibroblast cells (GFB cells), alkaline phosphatase, a marker enzyme for osteoblast, was used to measure the activities and $^{45}CaCl_2$ isotope was used to find out cellular and release of $^{45}Ca$, a requisite for bone formation,. PDL cells and GFB cells from 1 to 5 passages were also measured in alkaline phosphatase activity assay. By the use of above methods, followings were concluded that the PDL cells and the GFB cells have characteristics that are different from each other. In that PDL cells showed large amount of calcium uptake and large amount of calcium release in initial stage, they seem to possess characteristics which are similar to osteoblast-like cells. 1. The PDL cells, in contrast to the gingival fibroblast, showed exceedingly high alkaline phosphatase activity which was highest at the second passage, decreasing thereon. But gingival fibroblasts cells showed no distinct differences in alkaline phosphatase activity as the passage were elapsed. 2. For both PDL cells and GF cells, the $^{45}Ca$ uptake was greatest at 2 hours period. The PDL cells showed higher measuring than GFB cells through out the whole time period. 3. Whereas the GFB cells showed slow increase of $^{45}Ca$ release as time relapsed, the PDL cells showed rapid increase of $^{45}Ca$ release.

  • PDF

Effect of Glucose and Insulin on Human Gingival Fibroblasts and Periodontal Ligament Cells (포도당 및 인슐린이 인체 치은섬유모세포와 치주인대세포에 미치는 영향)

  • Han, Hee-Ran;Kim, Eung-Tea;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.1
    • /
    • pp.133-143
    • /
    • 1998
  • Diabetes mellitus is a systemic disease with profound effects on oral health and periodontal wound healing. Uncontrolled diabetes adversely affects surgical wound healing and is often associated with abnormal proliferation of fibroblasts. Human gingival fibroblasts and PDL cells were chosen because they are intimately involved in periodontal therapy and are important for the success of surgical procedure such as guided tissue regeneration. The aim of the present study was to elucidate whether cellular activity and collagen synthesis by glucose pre-treated human gingival fibroblasts and PDL cells are influenced by insulin, and whether healthy cells differ from glucose treated cells. Cells were cultured with DMEM at $37^{\circ}C$, 5% $CO_2$, 100% humidified incubator. To evaluate the effect of glucose on gingival fibroblasts and periodontal ligament cells, the cells were seeded at a cell density of $1{\times}10^4\;cells/well$ culture plates and treated with 20 and 50mM of glucose for 5 days. Then MTT assay was carried out. To evaluate the effect of insulin on glucose-pretreated cells, the cells were seeded at a cell density of $1{\times}10^4\;cells/well$ culture plates and treated with 20 and 50mM of glucose for 5 days. After incubation, $10^3$, $10^4$ and $10^5mU/l$ of insulin were also added to the each well and incubated for 2 days, respectively. Then, MTT assay and collagen synthesis assay were carried out. The results indicate that cellular activity of gingival fibroblasts significantly increased by glucose while periodontal ligament cells were unaffected and cellular activity of gingival fibroblasts and periodontal ligament cells were unaffected by insulin. Collagen synthesis of gingival fibroblast with 20mM glucose and insulin unaffected, but 50mM glucose and insulin increased than control. Collagen synthesis of periodontal ligament cell with 20mM glucose and $10^5mU/l$ insulin significantly increased than other groups and 50mM glucose pretreated PDL cells significantly increased at $10^3mU/l$ insulin but decreased at $10^4mU/l$ insulin. Our findings indicated that these cell types differed in their growth response to glucose, and the increase in collagen synthesis was significantly raised at insulin level of $10^3mU/l$ in gingival fibroblasts and periodontal ligament cells except 20mM glucose pretreated periodontal ligament cells.

  • PDF

The Effect of Mineral Trioxide Aggregate on the Production of Growth Factors and Cytokine by Human Periodontal Ligament Fibroblasts (Mineral trioxide aggregate (MTA)가 치주인대 섬유아세포에서 분비되는 cytokine과 성장인자 TGF-β1, FGF-2 발현에 미치는 영향)

  • Kwon, Ji-Yoon;Lim, Sung-Sam;Baek, Seung-Ho;Bae, Kwang-Shik;Kang, Myung-Hoe;Lee, Woo-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.3
    • /
    • pp.191-197
    • /
    • 2007
  • Mineral trioxide aggregate (MTA) would influence healing of periapical tissues by modulating the production of growth factors and cytokines from PDL fibroblasts, however, the studies are insufficient. Therefore, the purpose of this study was to monitor the expression of transforming growth factor-beta1 $(TGF-\beta1)$, fibroblast growth factor-2 (FGF-2), and interleukin-6 (IL-6) from PDL fibroblasts in the presence of MTA. The human PDL fibroblasts were seeded onto the set MTA or IRM at a level of $1\times10^5$ cells per unit well, and further incubated for 6, 12, 24, and 48 hours. The levels of $TGF-\beta1$, FGF-2 and IL-6 from the supernatant were measured by enzyme-linked immunosorbent assay (ELISA) The data were analyzed using one-way ANOVA. The level of $TGF-\beta1$ was down-reg ulated when the cells were grown in the presence of MTA except at 6 hours. The levels of FGF-2 release were significantly suppressed when PDL fibroblasts were grown in the presence of MTA or IRM at all time intervals (p < 0.05). The expressions of IL-6 from MTA treated co)Is were comparable to those of untreated control cells throughout the observation periods. We presume that this material inhibits the stimulatory function of growth factors on granulation tissue formation and in turn, it promotes the healing process modulated by other bone-remodeling cells.

Differentiation and characteristics of undifferentiated mesenchymal stem cells originating from adult premolar periodontal ligaments

  • Kim, Seong Sik;Kwon, Dae-Woo;Im, Insook;Kim, Yong-Deok;Hwang, Dae-Seok;Holliday, L. Shannon;Donatelli, Richard E.;Son, Woo-Sung;Jun, Eun-Sook
    • The korean journal of orthodontics
    • /
    • v.42 no.6
    • /
    • pp.307-317
    • /
    • 2012
  • Objective: The purpose of this study was to investigate the isolation and characterization of multipotent human periodontal ligament (PDL) stem cells and to assess their ability to differentiate into bone, cartilage, and adipose tissue. Methods: PDL stem cells were isolated from 7 extracted human premolar teeth. Human PDL cells were expanded in culture, stained using anti-CD29, -CD34, -CD44, and -STRO-1 antibodies, and sorted by fluorescent activated cell sorting (FACS). Gingival fibroblasts (GFs) served as a positive control. PDL stem cells and GFs were cultured using standard conditions conducive for osteogenic, chondrogenic, or adipogenic differentiation. Results: An average of $152.8{\pm}27.6$ colony-forming units was present at day 7 in cultures of PDL stem cells. At day 4, PDL stem cells exhibited a significant increase in proliferation (p < 0.05), reaching nearly double the proliferation rate of GFs. About $5.6{\pm}4.5%$ of cells in human PDL tissues were strongly STRO-1-positive. In osteogenic cultures, calcium nodules were observed by day 21 in PDL stem cells, which showed more intense calcium staining than GF cultures. In adipogenic cultures, both cell populations showed positive Oil Red O staining by day 21. Additionally, in chondrogenic cultures, PDL stem cells expressed collagen type II by day 21. Conclusions: The PDL contains multipotent stem cells that have the potential to differentiate into osteoblasts, chondrocytes, and adipocytes. This adult PDL stem cell population can be utilized as potential sources of PDL in tissue engineering applications.

Screening of genes differentially expressed in cultured human periodontal ligament cells and human gingival fibroblasts (배양된 치주인대세포와 치은섬유아세포에서 상이하게 발현된 유전자들의 검토 양상)

  • Yoon, Hye-Jeong;Choi, Mi-Hye;Yeo, Shin-II;Park, Jin-Woo;Choi, Byung-Ju;Kim, Moon-Kyu;Kim, Jung-Chul;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.3
    • /
    • pp.613-625
    • /
    • 2006
  • Periodontal ligament(PDL) cells and human gingival fibroblasts(HGFs) play important roles in development, regeneration, normal function, and pathologic alteration. PDL cells and HGFs have the similarity related with general characteristics of fibroblast such as spindle shaped morphology, the presence of vimentin intermediate filament and the synthesis of interstitial collagens and fibronectin. There were many studies about the differences between PDL cells and HGFs, but they were not about whole gene level. In this study, we tried to explain the differences of gene expression profiles between PDL cells and HGFs, and the differences among three individuals by screening gene expression patterns of PDL cells and HGFs, using cDNA microarray. Although there were some variants among three experiments, a set of genes were consistentely and differentially expressed in one cell type. Among 3,063 genes, 49 genes were more highly expressed in PDL cells and 12 genes were more highly expressed in HGFs. The genes related with cell structure and motility were expressed more highly in PDL cells. These are cofilin 1, proteoglycan 1 secretory granule, collagen type I(${\alpha}$ 1), adducin gamma subunit, collagen type III(${\alpha}$ 1), fibronectin, lumican(keratan sulfate proteoglycan), and ${\alpha}$ -smooth muscle actin. Tissue inhibitor of metalloproteinase known as the enzyme controlling extracellular matrix with matrix metalloproteinase is more highly expressed in PDL cells, osteoprotegerin known as osteoclastogenesis inhibitory factor is more highly expressed in HGFs. We performed northern blot to verify cDNA microarray results on selected genes such as tissue inhibitor of metalloproteinase, fibronectin, osteoprogeterin. The result of northern blot analysis showed that each cell expressed the genes in similar pattern with cDNA microarray result. This result indicates that cDNA microarray is a reliable method in screening of gene expression profiles.