• 제목/요약/키워드: PDIP calculation

검색결과 3건 처리시간 0.018초

Portal dose image prediction과 anisotropic analytical algorithm을 사용한 환자 특이적 정도관리 결과 비교 분석 (Comparison Analysis of Patient Specific Quality Assurance Results using portal dose image prediction and Anisotropic analytical algorithm )

  • 안범석;김보겸;이제희
    • 대한방사선치료학회지
    • /
    • 제35권
    • /
    • pp.15-21
    • /
    • 2023
  • 목 적: 전자포탈영상장치 기반의 환자특이적 정도관리를 위한 portal dose image prediction (PDIP)와 anisotropic analytical algorithm (AAA)을 비교하여 성능을 분석하고, AAA를 사용한 portal dosimetry의 임상적 사용 가능성을 평가하고자 한다. 대상 및 방법: 폐암 환자 15명과 간암 환자 17명, 총 32명의 환자를 후향적으로 선정하였다. PDIP와 AAA를 사용하여 검증용 치료계획을 생성하였다. 계산된 분포와 측정된 분포를 비교한 감마통과율(Gamma passing rate, GPR)과 다엽콜리메이터(Multileaf collimator, MLC) 위치 차이를 얻었다. 결 과: 폐암 환자군의 GPR 평균값은 PDIP 사용시 3%/3 mm에 대해 99.5% ± 1.1%, 1%/1 mm에 대해 90.6% ± 5.8%였다. AAA 사용시 3%/3 mm에 대해 98.9% ± 1.7%, 1%/1 mm에 대해 87.8% ± 5.2%였다. 간암 환자군의 GPR 평균값은 PDIP 사용시 3%/3 mm에 대해 99.9% ± 0.3%, 1%/1 mm에 대해 96.6% ± 4.6%였다. AAA 사용시 3%/3 mm에 대해 99.6% ± 0.5%, 1%/1 mm에 대해 89.5% ± 6.4%였다. MLC 위치 차이는 0.013 mm ± 0.002 mm로 적었으며, 감마통과율과 상관관계를 보이지 않았다. 결 론: 전자포탈영상장치 기반 환자특이적 정도관리를 수행할 때 AAA를 임상적으로 portal dosimetry 계산 알고리즘으로써 사용할 수 있다.

  • PDF

Verification of Extended Source-To-Imager Distance (SID) Correction for Portal Dosimetry

  • Son, Jaeman;Kim, Jung-in;Park, Jong Min;Choi, Chang Heon
    • 한국의학물리학회지:의학물리
    • /
    • 제29권4호
    • /
    • pp.137-142
    • /
    • 2018
  • This study aimed to evaluate and verify a process for correcting the extended source-to-imager distance (SID) in portal dosimetry (PD). In this study, eight treatment plans (four volumetric modulated arc therapy and four intensity-modulated radiation therapy plans) at different treatment sites and beam energies were selected for measurement. A Varian PD system with portal dose image prediction (PDIP) was used for the measurement and verification. To verify the integrity of the plan, independent measurements were performed with the MapCHECK device. The predicted and measured fluence were evaluated using the gamma passing rate. The output ratio was defined as the ratio of the absolute dose of the reference SID (100 cm) to that of each SID (120 cm or 140 cm). The measured fluence for each SID was absolutely and relatively compared. The average SID output ratios were 0.687 and 0.518 for 120 SID and 140 SID, respectively; the ratio showed less than 1% agreement with the calculation obtained by using the inverse square law. The resolution of the acquired EPIDs were 0.336, 0.280, and 0.240 for 100, 120, and 140 SID, respectively. The gamma passing rates with PD and MapCHECK exceeded 98% for all treatment plans and SIDs. When autoalignment was performed in PD, the X-offset showed no change, and the Y-offset decreased with increasing SID. The PD-generated PDIP can be used for extended SID without additional correction.

Verification of Mechanical Leaf Gap Error and VMAT Dose Distribution on Varian VitalBeamTM Linear Accelerator

  • Kim, Myeong Soo;Choi, Chang Heon;An, Hyun Joon;Son, Jae Man;Park, So-Yeon
    • 한국의학물리학회지:의학물리
    • /
    • 제29권2호
    • /
    • pp.66-72
    • /
    • 2018
  • The proper position of a multi-leaf collimator (MLC) is essential for the quality of intensity-modulated radiation therapy (IMRT) and volumetric modulated arc radiotherapy (VMAT) dose delivery. Task Group (TG) 142 provides a quality assurance (QA) procedure for MLC position. Our study investigated the QA validation of the mechanical leaf gap measurement and the maintenance procedure. Two $VitalBeam^{TM}$ systems were evaluated to validate the acceptance of an MLC position. The dosimetric leaf gaps (DLGs) were measured for 6 MV, 6 MVFFF, 10 MV, and 15 MV photon beams. A solid water phantom was irradiated using $10{\times}10cm^2$ field size at source-to-surface distance (SSD) of 90 cm and depth of 10 cm. The portal dose image prediction (PDIP) calculation was implemented on a treatment planning system (TPS) called $Eclipse^{TM}$. A total of 20 VMAT plans were used to confirm the accuracy of dose distribution measured by an electronic portal imaging device (EPID) and those predicted by VMAT plans. The measured leaf gaps were 0.30 mm and 0.35 mm for VitalBeam 1 and 2, respectively. The DLG values decreased by an average of 6.9% and 5.9% after mechanical MLC adjustment. Although the passing rates increased slightly, by 1.5% (relative) and 1.2% (absolute) in arc 1, the average passing rates were still within the good dose delivery level (>95%). Our study shows the existence of a mechanical leaf gap error caused by a degenerated MLC motor. This can be recovered by reinitialization of MLC position on the machine control panel. Consequently, the QA procedure should be performed regularly to protect the MLC system.