• 제목/요약/키워드: PDE nozzle

검색결과 4건 처리시간 0.019초

PDE 추진기관 부체계 기술 연구 동향 (Research Activities on Subsystem Technologies of PDE Propulsions)

  • 진완성;김지훈;황원섭;김정민;최정열
    • 한국항공우주학회지
    • /
    • 제43권8호
    • /
    • pp.712-721
    • /
    • 2015
  • 펄스데토네이션엔진은 넓은 작동 범위와 높은 열효율로 인하여 잠재력 있는 미래 추진기관 시스템으로 연구되어왔다. 이러한 잠재력을 개선하기 위하여 지난 10여 년간 다양한 요소 기술들에 대한 연구가 진행되었다. 고주파수의 환경에서 PDE를 안정적으로 작동시키기 위하여, inflow-driven 밸브, 회전 밸브 등을 포함하는 새로운 밸브 시스템과 무밸브 시스템이 개발되었다. 작은 점화 에너지로 빠르게 데토네이션을 발생시키기 위하여 플라즈마 점화 방법과 경사 장애물 기술과 같은 DDT 가속 방법이 연구되었다. 또한 PDE 추진 성능 극대화를 위하여 유체노즐 등의 노즐 시스템도 진행 중인 연구 주제의 하나이다. 본 논문에서는 지난 수년간 개발된 PDE의 최신 부체계 핵심 기술에 대하여 소개하고자 한다.

Numerical investigation of detonation combustion wave propagation in pulse detonation combustor with nozzle

  • Debnath, Pinku;Pandey, K.M.
    • Advances in aircraft and spacecraft science
    • /
    • 제7권3호
    • /
    • pp.187-202
    • /
    • 2020
  • The exhaust nozzle serves back pressure of Pulse detonation combustor, so combustion chamber gets sufficient pressure for propulsion. In this context recent researches are focused on influence of nozzle effect on single cycle detonation wave propagation and propulsion performance of PDE. The effects of various nozzles like convergent-divergent nozzle, convergent nozzle, divergent nozzle and without nozzle at exit section of detonation tubes were computationally investigated to seek the desired propulsion performance. Further the effect of divergent nozzle length and half angle on detonation wave structure was analyzed. The simulations have been done using Ansys 14 Fluent platform. The LES turbulence model was used to simulate the combustion wave reacting flows in combustor with standard wall function. From these numerical simulations among four acquaint nozzles the highest thrust augmentation could be attained in divergent nozzle geometry and detonation wave propagation velocity eventually reaches to 1830 m/s, which is near about C-J velocity. Smaller the divergent nozzle half angle has a significant effect on faster detonation wave propagation.

MEASURE THEORETICAL APPROACH FOR OPTIMAL SHAPE DESIGN OF A NOZZLE

  • FARAHI M. H.;BORZABADI A. H.;MEHNE H. H.;KAMYAD A. V.
    • Journal of applied mathematics & informatics
    • /
    • 제17권1_2_3호
    • /
    • pp.315-328
    • /
    • 2005
  • In this paper we present a new method for designing a nozzle. In fact the problem is to find the optimal domain for the solution of a linear or nonlinear boundary value PDE, where the boundary condition is defined over an unspecified domain. By an embedding process, the problem is first transformed to a new shape-measure problem, and then this new problem is replaced by another in which we seek to minimize a linear form over a subset of linear equalities. This minimization is global, and the theory allows us to develop a computational method to find the solution by a finite-dimensional linear programming problem.

무-밸브 공기흡입 펄스데토네이션 엔진의 내부 유동과 성능 (Internal Flow Dynamics and Performance of Valveless Airbreathing Pulse Detonation Engine)

  • ;최정열
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.367-370
    • /
    • 2006
  • This paper deals with the modeling and simulation of the internal flowfield in a valveless airbreathing pulse detonation engine (PDE) currently under experimental development at the U.S. Naval Postgraduate School. The system involves no valves in the airflow path, and the isolation between the inlet and combustor is achieved through the gasdynamics in an isolator. The analysis accommodates the full conservation equations in axisymmetric coordinates, and takes into account variable properties for ethylene/oxygen/air system. Chemical reaction schemes with a single progress variable are implemented to minimize the computational burden. Detailed flow evolution during a full cycle is explored and propulsive performance is calculated. Effect of initiator mass injection rate is examined and results indicate that the mass injection rate should be carefully selected to avoid the formation of recirculation zones in the initial cold flowfield. Flow evolution results demonstrate a successful detonation transmission from the initiator to the combustor. However, strong pressure disturbance may propagate upstream to the inlet nozzle, suggesting the current configuration could be further refined to provide more efficient isolation between the inlet and combustor.

  • PDF