• 제목/요약/키워드: PDCV

검색결과 4건 처리시간 0.017초

PC기반 비례방향제어밸브를 이용한 압력제어에 관한 연구 (A study on PC based pressure control using a proportional directional control valve)

  • 전세형;여화동;홍석철;김성동
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.462-466
    • /
    • 1997
  • Proportional directional control valves (PDCVl adjust the amount of flow as well as flow direction in response to an electrical signal. This valves includes direct operated valves with or without spool position feedback. This paper investigates if it is possible to control pressure of fluids by means of the PDCV. A pressure signal is feed back to the Proportional-Integral (PI) controller, which is based upon a personal computer (PC). The PI control algorithm is implemented in a graphical programming language of LabVIEW. The results of experiments show the PDCV can be used a multi function valve of pressure control as well as direction control.

  • PDF

지역난방 사용자기계실 내 열수송관 차압을 이용한 발전 및 제어 기술 (Power Generation and Control System Using Differential Pressure of District Heating Pipeline in a Substation)

  • 김경민;박성용;오문세
    • 에너지공학
    • /
    • 제26권3호
    • /
    • pp.90-96
    • /
    • 2017
  • 지역난방 열수송관을 통해 중온수를 공급할 때 고압의 중온수로부터 열사용자 설비(지역난방 열교환기)를 보호하고 온도조절을 원활히 하고 유체의 원거리 공급을 위해 차압유량조절밸브를 통해 압력을 조절하거나 압력을 감소시키고 있다. 하지만, 고압 유체 사용에 따라 압력조절밸브에서 캐비테이션이 발생하여 잦은 고장 및 오작동을 유발하여 많은 문제가 발생하고 있으며, 사업자 및 사용자 모두에게 에너지 손실 및 민원 유발 등의 원인이 되고 있다. 이러한 문제를 해결하기 위해 연구 중인 1차측 차압유량조절밸브를 수력터빈으로 대체하여 차압에너지를 전기에너지로 변환하고, 전기를 2차측 펌프의 동력으로 활용하는 에너지 절감기술을 소개하고자 한다.

가변유량 밸런싱밸브를 적용한 온수 난방시스템의 유체역학적 성능 평가 (Fluid Dynamic Performance in a Hot-Water Heating System with a Variable-Flow-Rate Balancing Valve)

  • 허전;이석종;성재용;이명호
    • 설비공학논문집
    • /
    • 제19권8호
    • /
    • pp.577-584
    • /
    • 2007
  • A variable-flow-rate balancing valve has been developed and optimized to apply to a distributor in a hot-water heating system. Fluid dynamic performance of the system was evaluated by comparing the results with the previous pressure difference control valve (PDCV) system. In view of the variations of pressure drop and flow rate according to the sequential closing of the control valves, the present system which is named "smart system distributor", is very stable without a certain flow rate concentration. The level of pressure drop variation is also low as compared with the previous system with a PDCV. In view of the occurrence of cavitation, the present system is quite superior to the previous system because the instantaneous pressures at all sections are much higher than the vapor pressure. On the other hand, the previous system has a possibility of cavitation when one or more control valves are closed.

공동주택 기계실 난방설비 운전 개선 연구 (A Study on Improved Operation of Apartment Heating System in a Machine Room)

  • 서정아;신영기;김용기;이태원
    • 설비공학논문집
    • /
    • 제29권1호
    • /
    • pp.38-42
    • /
    • 2017
  • This study proposes an idea for energy saving in apartment machine rooms. A conventional district heating system is equipped with constant-flow pumps and bypass valves to regulate pump differential pressure. Each family unit is equipped with a constant-flow on/off valve. This leads to excessive hot water circulation and a high return temperature. To reduce energy loss, this study assumes that each family unit is renovated with a heating valve which regulates the return temperature at $35^{\circ}C$. The hot water supply pump is also replaced with a pump with an inverter to vary flow rate. Expected energy savings is then estimated from field test data. According to the results, pump electricity consumption was reduced by 6,100 kWh for a family unit building over about half a year. The supply temperature can also be lowered by $5^{\circ}C$, which can contribute to a production of electricity of 10.3 kWh/ton of hot water.