• Title/Summary/Keyword: PD controller

Search Result 413, Processing Time 0.024 seconds

Study on a Waypoint Tracking Algorithm for Unmanned Surface Vehicle (USV) (무인수상선을 위한 경유점 추적 제어 알고리즘에 관한 연구)

  • Son, Nam-Sun;Yoon, Hyeon-Kyu
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.35-41
    • /
    • 2009
  • A waypoint tracking algorithm(WTA) is designed for Unmanned Surface Vehicle(USV) in which water-jet system is installed for propulsion To control the heading of USV for waypoint tracking, the steering nozzle of water-jet need, to be controlled. Firstly, target heading is calculated by using the position information of waypoints input from the land control center. Secondly, the command for the steering nozzle of water-jet is calculated in real time by using the heading and the rate-of-turn( ROT) from magnetic compass, In this study, in order to consider the drift angle due to external disturbance such as wind and wave, the course of ground( COG) can be used instead of heading at higher speed than a certain value, To test the performance of newly-designed WTA, the tests were carried out in actual sea area near Gwang-an bridge of Busan. In this paper, the sea trial test results from WTA are analyzed and compared with those from manual control and those from commercial controller.

Performance Evaluation for Several Control Algorithms of the Actuating System Using G/C HILS Technique (비행 전구간 유도제어 HILS 기법을 적용한 구동제어 알고리즘 성능 평가 연구)

  • Jeon, Wan Soo;Cho, Hyeon Jin;Lee, Man Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.114-129
    • /
    • 1996
  • This paper describes the whole development phase for the underwater vehicle actuating system with high hydroload torque disturbance. This includes requirement analysis, system modeling, control algorithm design, real time implementation, test and performance evaluations. As for driving control algorithms, fuzzy logic, variable structure and PD(Proportional-Differential) algorithm were designed and implemented on board controller using a single chip microprocessor. Intel 8797. And test and performance evaluation is carried out both single test and wystem integration test. We could confirm the basic performance of actuating system through the single test and gereral developing work of any actuating systems was finished with a single performance test of actuating system without system integration test. But, we suggested that system integration test be needed. System integration test is carried out using G/C HILS(Guidance and Control Hardware-In-the -Loop Simulation) which is constituted flight motion simulator, load simulator, real time host computer and the related subsystems such as inertial navigation system, power supply system and Guidance and Control Computer etc.. The most important practical contribution of this paper is that full system characteristics such as minimal control effort, enhancement of guidance and autopilot performance by the actuating system using G/C HILS technique are investigated. Through full running G/C HILS, in spite of the passing to single tests, some control algorithm resulted in failure as to stability of full system and system time frame.

  • PDF

A Sliding Mode Control of an Underwater Robotic Vehicle under the Influence of Thrust Dynamics (추진기의 동역학을 고려한 무인잠수정의 슬라이딩 모드 제어)

  • Choi, Hyeung-Sik;Park, Han-Il;Roh, Min-Shik;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1203-1211
    • /
    • 2009
  • The dynamics of underwater vehicles can be greatly influenced by the dynamics of the vehicle thrusters. The control of the state of the hovering or very slow motion of the underwater vehicle is most important for automatic docking or control of the manipulator of the vehicle. The dynamics of the thruster based on the electric motor is nonlinear and has uncertain parameters. Since the dynamics of the vehicle coupled with the dynamics of the thruster is nonlinear and has uncertain parameters, a robust control is very effective for a desired motion tracking of the uncertain and nonlinear vehicle. In this paper a study was performed on the robust control scheme of the very slow motion or hovering motion of the underwater vehicle actuated by the electric motor. Also, a concurrent control on the state of the vehicle with nonlinearity and uncertain parameters was performed. A sliding mode control algorithm out of robust controllers was designed and applied, which compensates the nonlinear forces and uncertain parameters of the vehicle and actuator. Through a computer simulation, the proposed control scheme was compared with a linear PD controller and its superior performance was validated.