• Title/Summary/Keyword: PCR-based differential display

Search Result 19, Processing Time 0.033 seconds

Differential Display of mRNA in the Preimplantation Mouse Embryos by Reverse Transcriptase Polymerase Chain Reaction (역전사 연쇄중합반응에 의한 착상전 생쥐난자에서의 상이한 mRNA의 발현조사에 의한 새로운 유전자의 크로닝법)

  • 김진회;박흠대;이훈택;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.18 no.3
    • /
    • pp.199-206
    • /
    • 1994
  • We present here a new PCR-based cloning technique that allows the different PCR products during mouse embryogenesis. Recently, mRNA differential display described by Liang & Pardee (Science 257, 1992) and re-confirmed by Zimermann & Schultz (PNAS 91,1994). This method will detect the appropriate changes in the temporal patterns of expression or in the transition from maternal control to zygotic control as well as the functional difference of embryo with polyspermy or monospermy, the difference of expression between successfully hatched blastocyst and blastocyst failed to hatching, response to agents, and cell cycle regulation. By this methods, we have cloned an eDNA, which showed mouse 2 cell specific expression. Genomic DNA digested with EcoRI showed approximately 15 kb and then showed higher expression in fetal liver rather than adult liver. Furthermore, this gene is likely to have 2 mRNA by alternative splicing.

  • PDF

Involvement of Cytochrome c Oxidase Subunit I Gene during Neuronal Differentiation of PC12 Cells

  • Kang, Hyo-Jung;Chung, Jun-Mo;Lee, See-Woo
    • BMB Reports
    • /
    • v.30 no.4
    • /
    • pp.285-291
    • /
    • 1997
  • It is becoming increasingly evident that significant changes in gene expression occur during the course of neuronal differentiation. Thus, it should be possible to gain information about the biochemical events by identifying differentially expressed genes in neuronal differentiation The PC12 cell line is a useful model system to investigate the molecular mechanism underlying neuronal differentiation and has been used extensively for the study of the molecular events that underlie the biological actions of nerve growth factor (NGF). In this study, we report an application of the recently described mRNA differential display method to analyze differential gene expression during neuronal differentiation. Using this technique, we have identified several cDNA tags expressed differentially during neuronal differentiation. Interestingly, one of these clones was cytochrome c oxidase subunit I (COX I) gene. The differential expression of COX I gene was confirmed by Northern blot analysis as well as RT-PCR. Southern blot analysis of the genomic DNA of PC12 cells revealed that COX I is a single gene. Induction of the oxidative enzyme might reflect the energy requirement in neuronal differentiation.

  • PDF

Comparative Analysis of Gene Expression in the Female Reproductive Organs

  • Kim, Min-Goo;Seo, Hee-Won;Choi, Yo-Han;Lee, Chang-Kyu;Ka, Hak-Hyun
    • Journal of Embryo Transfer
    • /
    • v.24 no.2
    • /
    • pp.77-87
    • /
    • 2009
  • To understand molecular and cellular mechanisms of many gene products in the female reproductive organs including the ovary and uterine endometrium as well as during embryo development, researchers have developed and utilized many effective methodologies to analyze gene expression in cells, tissues and animals over the last several decades. For example, blotting techniques have helped to understand molecular functions at DNA, RNA and protein levels, and the reverse transcription-polymerase chain reaction (RT-PCR) method has been widely used in gene expression analysis. However, some conventional methods are not sufficient to understand regulation and function of genes expressed in very complex patterns in many organs. Thus, it is required to adopt more high-throughput and reliable techniques. Here, we describe several techniques used widely recently to analyze gene expression, including annealing control based-PCR, differential display-PCR, expressed sequence tag, suppression subtractive hybridization and microarray techniques. Use of these techniques will help to analyze expression pattern of many genes from small scale to large scale and to compare expression patterns of genes in one sample to another. In this review, we described principles of these methodologies and summarized examples of comparative analysis of gene expression in female reproductive organs with help of those methodologies.

Identification of Differentially Expressed Genes in Murine Hippocampus by Modulation of Nitric Oxide in Kainic Acid-induced Neurotoxic Animal Model

  • Suh, Yo-Ahn;Kwon, O-Min;Yim, So-Young;Lee, Hee-Jae;Kim, Sung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.4
    • /
    • pp.149-154
    • /
    • 2007
  • Kainic acid (KA) causes neurodegeneration, but no consensus has been reached concerning its mechanism. Nitric oxide may be a regulator of the mechanism. We identified differentially expressed genes in the hippocampus of mice treated with kainic acid, together with or without L-NAME, a nonselective nitric oxide synthase inhibitor, using a new differential display PCR method based on annealing control primers. Eight genes were identified, including clathrin light polypeptide, TATA element modulatory factor 1, neurexin III, ND4, ATPase, $H^+$ transporting, V1 subunit E isoform 1, and N-myc downstream regulated gene 2. Although the functions of these genes and their products remain to be determined, their identification provides insight into the molecular mechanism(s) involved in KA-induced neuronal cell death in the hippocampal CA3 area.

Isolation and Characterization of Eukaryotic Translation Initiation Factor 5A (eIF-5A) from Potato (감자로부터 Eukaryotic Translation Initiation Factor 5A (elF-5A) 유전자의 동정 및 발현 분석)

  • 인준교;신동호;최관삼;양덕춘
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.5
    • /
    • pp.283-287
    • /
    • 2001
  • Differential display based on PCR was employed to identify genes expressed during tuber-developing stage of potato (Solanum tuberosum L. cv. Irish Cobbler). An eukaryotic initiation factor 5A (eIF-5A) clone isolated from a cDNA library constructed with developing micro-tuber using a probe of PCR fragment. We isolated three positive clones and ore of them contained open reading frame. This clone revealed high sequence similarity to tomato eIF 5A cDNA. At the DNA level, there is 94.8% identity with the tomato eIF-5A4, whereas at the protein level there is a high identity with 97.5%. The potato eIF 5A clone is 716 bp in length and contains a single open reading frame from 57 to 539 bp, a 56 bp 5'-untranslated region and a 177 bp 3'-untranslated region. The deduced protein composed of 160 amino acid residues, with a predicted molecular mass of 17.4 kD and an estimated pl of 5.5. The sequence of 12 (STSKTGKHGHAK) amino acids among eIF-5A proteins is perfectly conserved from yeast to human. That sequence in potato eIF-5A protein is also conserved at position 46 to 57 amino acid. This region embeds the post-translational modification site of the lysine residue (at the seventh K) to hypusine that is crucial to eIF-5A activity. The northern blot analysis of eIF5A has shown abundant expression, mainly in flower organs (stamen, ovary, petal, sepal), fruit and stolen.

  • PDF

Characterization of Pathogenesis and Plant Defence-related Genes Against Potato virus X infection empolying Potato X virus expresssin vector

  • Park, Mi-Ri;Kwon, Sun-Jung;Kim, Kook-Hyung
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.74.1-74
    • /
    • 2003
  • Differential display (DD) of mRNA is a technique in which mRNA species expressed by a cell population are reverse transcribed and then amplified by many separate polymerase chain reactions (PCR). Using DD-RT-PCR we obtained many genes that expressed differentially in healthy and PVX-infected Nicotiana benthamima, using total RNAs extracted from healthy and PVX-infected N. benthamiana plants. Three hundred and twenty-five DNA fragments isolated from DD-RT-PCR were cloned and sequenced for further characterization. Several host genes including SKPI-like protein, heat shock transcription factor and Avr9/Cf-9 rapidly elicited protein were selected to obtain full-length open reading frame and to characterize their potential involvement in virus disease development and/or host's defense against virus infection employing PVX-based expression vector. Transcrips from wild-type and clones containing each selected gene were inoculated onto N. benthamiana Levels of virus replication were confirmedby RT-PCR and RNA blot analysis, Expression profiles and potential role(s) of selected genes upon PVX infection will be discussed.

  • PDF

Identification of Genes Involved in the Onset of Female Puberty of Rat

  • Eun Jung Choi;Byung Ju Lee
    • Animal cells and systems
    • /
    • v.3 no.3
    • /
    • pp.319-329
    • /
    • 1999
  • Onset of female puberty follows a series of prepubertal cellular and molecular events including changes of synaptic plasticity, synthetic and releasing activity and gene expression. Dramatic increase of gonadal steroid level is one of the most prominent changes before the onset of puberty. Based on the importance of steroid feedback upon the hypothalamus, we adopted an estrogen sterilized rat (ESR) model where 100 ng of 17$\eta$-estradiol were administered into neonatal pubs for 7 days after birth. To identify genes involved in the onset of female puberty, we applied PCR differential display using RNA samples derived from ESR and control rat hypothalami. About 100 out of more than 1000 RNA species examined displayed differential expression patterns between a 60-day old control rat and ESR. Sequence analysis of differentially amplified PCR products showed homology with genes such as mouse kinesin superfamily-associated protein 3 (KAP3) and several cDNAs previously described by others in mouse and human tissues. Several gene products such as 2-1 and 8-1 corresponded to novel DNA sequences. We analyzed mRNA levels of KAP3, 2-1 and 8-1 genes in the hypothalami derived from neonatal, 6-, 28-, 31-, and 40-day old rats. Northern blot analysis showed that mRNAs of KAP3, 2-1 and 8-1 genes were markedly increased before the initiation of puberty. Neonatal treatment of estrogen clearly inhibited prepubertal increases in KAP3, 2-1 and 8-1 mRNA levels. Therefore, these genes may play important roles in the initiation of hypothalamic puberty. In addition, intracerebroventricular (icv) injection of antisense KAP3 oligodeoxynucleotide (ODN) clearly delayed puberty initiation determined by vaginal opening, which further confirmed that KAP3 plays an important role in the regulation of puberty initiation.

  • PDF

Molecular Cloning and Characterization of Attacin from the Swallowtail Butterfly, Papilio xuthus

  • Kim, Seong-Ryul;Hwang, Jae-Sam;Park, Seung-Won;Goo, Tae-Won;Kim, Ik-Soo;Kang, Seok-Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.23 no.2
    • /
    • pp.231-238
    • /
    • 2011
  • Attacin is an insect antibacterial protein that plays an important role in immune response to injury and infection. In this report, we have isolated and characterized of cDNA encoding for the attacin from the immunized larvae of swallowtail butterfly, $Papilio$ $xuthus$. A full length cDNA of $P.$ $xuthus$ attacin was obtained by employing annealing control primer (ACP)-based differential display PCR and 5' RACE. The complete $P.$ $xuthus$ attacin cDNA was comprised of 949 bp encoding a 250 amino acid precursor. It contains a putative 18 amino acid signal peptide sequence, a 42 amino acid propeptide sequence, and a 190 amino acid mature protein with a theoretical molecular mass of 19904.01 and a pI of 9.13. The putative mature protein of $P.$ $xuthus$ attacin showed 48-52% and 24-30% identity in amino acid sequences with that of lepidopteran and dipteran insects, respectively. Semiquantitive RT-PCR results revealed that the transcript of $P.$ $xuthus$ attacin gene was up-regulated at significant levels after injection with bacterial lipopolysaccharide (LPS). We sub-cloned cDNA fragment encoding mature $P.$ $xuthus$ attacin into the expression vector, highly expressed in $E.$ $coli$ BL21 cells, and its antibacterial activity was analyzed. Recombinant $P.$ $xuthus$ attacin evidenced considerably antibacterial activity against Gram-negative bacteria, $E.$ $coli$ ML 35 and $Klebsiella$ $pneumonia$.

Identification of novel susceptibility genes associated with bone density and osteoporosis in Korean women

  • Bo-Young Kim;Do-Wan Kim;Eunkuk Park;Jeonghyun Kim;Chang-Gun Lee;Hyun-Seok Jin;Seon-Yong Jeong
    • Journal of Genetic Medicine
    • /
    • v.19 no.2
    • /
    • pp.63-75
    • /
    • 2022
  • Purpose: Osteoporosis is a common calcium and metabolic skeletal disease which is characterized by decreased bone mass, microarchitectural deterioration of bone tissue and impaired bone strength, thereby leading to enhanced risk of bone fragility. In this study, we aimed to identify novel genes for susceptibility to osteoporosis and/or bone density. Materials and Methods: To identify differentially expressed genes (DEGs) between control and osteoporosis-induced cells, annealing control primer-based differential display reverse-transcription polymerase chain reaction (RT-PCR) was carried out in pre-osteoblast MC3T3-E1 cells. Expression levels of the identified DEGs were evaluated by quantitative RT-PCR. Association studies for the quantitative bone density analysis and osteoporosis case-control analysis of single nucleotide polymorphism (SNPs) were performed in Korean women (3,570 subjects) from the Korean Association REsource (KARE) study cohort. Results: Comparison analysis of expression levels of the identified DEGs by quantitative RT-PCR found seven genes, Anxa6, Col5a1, Col6a2, Eno1, Myof, Nfib, and Scara5, that showed significantly different expression between the dexamethason-treated and untreated MC3T3-E1 cells and between the ovariectomized osteoporosis-induced mice and sham mice. Association studies revealed that there was a significant association between the SNPs in the five genes, ANXA6, COL5A1, ENO1, MYOF, and SCARA5, and bone density and/or osteoporosis. Conclusion: Using a whole-genome comparative expression analysis, gene expression evaluation analysis, and association analysis, we found five genes that were significantly associated with bone density and/or osteoporosis. Notably, the association P-values of the SNPs in the ANXA6 and COL5A1 genes were below the Bonferroni-corrected significance level.