• Title/Summary/Keyword: PCR with species-specific primer

Search Result 197, Processing Time 0.028 seconds

Comparison of RAPD Profiles and Phenotypical Characters of Streptococcal Strains (연쇄상구균의 표현형적 특성과 RAPD profiles 비교)

  • Song, Jin-Gyeong;Kim, Jong-Hun;Kim, Eun-Hui
    • Journal of fish pathology
    • /
    • v.16 no.1
    • /
    • pp.51-59
    • /
    • 2003
  • Streptococcal infection is one of the most serious disease of cultured olive flounder, Paralychthys olivaceus in Korea and caused by more than one species. However, there has been considerable confusions about the taxonomic position of the fish pathogenic streptococci. In this study, We performed the randomly amplified polymorphic DNA(RAPD) pattern analysis to evaluate the possible classification in 8 streptococci isolated from diseased olive flounder and reference strains based on their DNA structure. RAPD PCR with DNA solution prepared by simple boiling and 10-mer random primer was appeared to be a good tool for discrimination of different streptococcal strains. Phenotypical characters by simple biological test and API 20 Strep corresponded well to the specific profiles of RAPD in streptococcal isolates of this study. Therefore, the RAPD profile was considered as one of differential characters to discriminate the streptococcal isolates from diseased olive flounder.

Rapid Methods to Distinguish Heterodera schachtii from Heterodera glycines Using PCR Technique (PCR 기법을 이용한 사탕무씨스트선충과 콩씨스트선충의 간이동정)

  • Ko, Hyoung Rai;Kim, Eun Hwa;Kim, Se Jong;Lee, Jae Kook;Lee, Wang Hyu
    • Research in Plant Disease
    • /
    • v.23 no.3
    • /
    • pp.241-248
    • /
    • 2017
  • The purpose of this study was to develop rapid methods for distinguishing between Heterodera schachtii and H. glycines detected from chinese cabbage fields of highland in Gangwon, Korea. To do this, we performed PCR-RFLP and PCR with the primers set developed in this study for GC147, GC408 and PM001 population, H. schachtii, and YS224, DA142 and BC115 population, H. glycines. Eight restriction enzymes generated RFLP profiles of mtDNA COI region for populations of H. schachtii and H. glycines, repectively. As a result, treatment of two restriction enzymes, RsaI and HinfI, were allowed to distinguish H. schachtii from H. glycines based on the differences of DNA band patterns. The primer set, #JBS1, #JBG1 and #JB3R, amplified specific fragments with 277 and 339 bp of H. schachtii, 339 bp of H. glycines, respectively, while it did not amplify fragments from three root-knot nematodes and two root-lesion nematodes. Thus, the primer set developed in this study could be a good method, which is used to distinguish between H. schachtii and H. glycines.

Molecular Identification of Arbuscular Mycorrhizal Fungal Spores Collected in Korea

  • Lee, Jai-Koo;Park, Sang-Hyeon;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.34 no.1
    • /
    • pp.7-13
    • /
    • 2006
  • Arbuscular mycorrhizas (AM) have mutualistic symbiosis with plants and thus efforts have been placed on application of these symbiotic relationships to agricultural and environmental fields. In this study, AM fungi were collected from 25 sites growing with 16 host plant species in Korea and cultured with Sorghum bicolor in greenhouse condition. AM fungal spores were extracted and identified using both morphological and molecular methods. Using morphological characters, total 15 morpho-speices were identified. DNA was extracted from single spore of AM fungi and a partial region on 18S rDNA was amplified using nested PCR with AM fungal specific primers AML1/AML2. A total of 36 18S rDNA sequences were analyzed for phylogenetic analysis and 15 groups of AM fungi were identified using both morphological and molecular data of spores. Among the species, 4 species, Archaeospora leptoticha, Scutellospora castanea, S. cerradensis, S. weresubiae were described for the first time in Korea and two species in Glomus and a species in Gigaspora were not identified. Morphological and molecular identification of AM fungal spores in this study would help identify AM fungal community colonizing roots.

Rapid Origin Determination of the Northern Mauxia Shrimp (Acetes chinensis) Based on Allele Specific Polymerase Chain Reaction of Partial Mitochondrial 16S rRNA Gene

  • Kang, Jung-Ha;Noh, Eun-Soo;Park, Jung-Youn;An, Chel-Min;Choi, Jung-Hwa;Kim, Jin-Koo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.4
    • /
    • pp.568-572
    • /
    • 2015
  • Acetes chinensis is an economically important shrimp that belongs to the Sergestidae family; following fermentation, A. chinensis' economic value, however, is low in China, and much of the catch in China is exported to Korea at a low price, thus leading to potential false labeling. For this reason, we developed a simple method to identify A. chinensis' origin using allele-specific polymerase chain reaction (PCR). Ten single nucleotide polymorphisms (SNPs) were identified from partial (i.e., 570 bp) DNA sequence analysis of the mitochondrial 16s rRNA gene in 96 Korean and 96 Chinese individual shrimp. Among 10 SNP sites, four sites were observed in populations from both countries, and two sites located in the middle with SNP sites at their 3'-ends were used to design allele-specific primers. Among the eight internal primers, the C220F primer specific to the Chinese A. chinensis population amplified a DNA fragment of 364 bp only from that population. We were able to identify the A. chinensis population origin with 100% accuracy using multiplex PCR performed with two external primers and C220F primers. These results show that the 16S rRNA gene that is generally used for the identification of species can be used for the identification of the origin within species of A. chinensis, which is an important finding for the fair trade of the species between Korea and China.

Development of Multiplex RT-PCR for Simultaneous Detection of Garlic Viruses and the Incidence of Garlic Viral Disease in Garlic Genetic Resources

  • Nam, Moon;Lee, Yeong-Hoon;Park, Chung Youl;Lee, Min-A;Bae, Yang-Soo;Lim, Seungmo;Lee, Joong Hwan;Moon, Jae Sun;Lee, Su-Heon
    • The Plant Pathology Journal
    • /
    • v.31 no.1
    • /
    • pp.90-96
    • /
    • 2015
  • Garlic generally becomes coinfected with several types of viruses belonging to the Potyvirus, Carlavirus, and Allexivirus genera. These viruses produce characteristically similar symptoms, they cannot be easily identified by electron microscopy (EM) or immunological detection methods, and they are currently widespread around the world, thereby affecting crop yields and crop quality adversely. For the early and reliable detection of garlic viruses, virus-specific sets of primers, including species-specific and genus-specific primers were designed. To effectively detect the twelve different types of garlic viruses, primer mixtures were tested and divided into two independent sets for multiplex polymerase chain reaction (PCR). The multiplex PCR assays were able to detect specific targets up to the similar dilution series with monoplex reverse transcription (RT)-PCR. Seventy-two field samples collected by the Gyeongbuk Agricultural Technology Administration were analyzed by multiplex RT-PCR. All seventy two samples were infected with at least one virus, and the coinfection rate was 78%. We conclude that the simultaneous detection system developed in this study can effectively detect and differentiate mixed viral infections in garlic.

The Determination of the Partial 28S Ribosomal DNA Sequences and Rapid Detection of Phellinus linteus and Related species

  • Park, Hyung-Sik;Kim, Gi-Young;Nam, Byung-Hyouk;Lee, Sang-Joon;Lee, Jae-Dong
    • Mycobiology
    • /
    • v.30 no.2
    • /
    • pp.82-87
    • /
    • 2002
  • Species of Phellinus were known to harmful fungi causing white pocket rot and severe plant disease such as canker or heartrot in living trees in the West, but some species have been used to traditional medicines in the Orient for a long time. In this study the partial D1-D2 nucleotide sequences of 28S ribosomal DNA from 13 Phellinus strains were determined and compared with the sequences of 21 strains obtained from GenBank database. According to the neighbor-joining(NJ) method comparing the sequence data the phylogenetic tree was constructed. The phylogenetic tree displayed the presence of four groups. Group I includes P. ferreus, P. gilvus and P. johnsonianus, Group II contains P. laevigatus, P. conchatus and P. tremulae, Group III possesses P. linteus, P. weirianus, P. baumii, P. rhabarbarinus and P. igniarius, and Group IV comprises P. pini, P. chrysoloma. P. linteus and P. baumii, which were used mainly in traditional medicine, belong to the same group, but exactly speaking both were split into two different subgroups. To detect P. linteus only, we developed the PCR primer, D12HR. The primer showed the specific amplification of P linteus, which is permitted to medicinal mushroom in the East. The results make a potential to be incorporated in a PCR identification system that could be used for the rapid identification of this species from its related species, P. linteus especially.

Development of SCAR markers in Creeping bentgrass(Agrostis palustrics Huds.) cultivars (Creeping bentgrass(Agrostis palustrics Huds.) 품종별 SCAR markers 개발)

  • Jang, Duk-Hwan;Jung, Seung-Ho
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.307-316
    • /
    • 2009
  • Creeping bentgrass (Agrostis palustrics Huds.) is cool season turfgrasse that is used for putting green in golf course. Creeping bentgrass cultivars are difficult to distinguish with the same species because of similar morphological characters and low level of genetic diversity. The SCAR markers using the specific DNA can be useful for differentiating between creeping bentgrass cultivars. Five RAPD primers were used for specific band detection among creeping bentgrass cultivars, penncross, penn A-4, crenshaw, L-93, CY-2, T-1. The pairs of SCAR primers for six cultivers were designed by the specific sequences of the bands that amplified by RAPD. Three of the six SCAR primers could not make the use as SCAR primers because the specific false bands were detected in all cultivars. The remaining pairs of SCAR primer, CY850F/R, T700F/R, L2900F/R, amplified the specific band at expected size for three cultivars, CY-2, T-1, L-93, respectively. The CY850F/R primer amplified a band of 850bp in CY-2 cultivar, the T700F/R primer amplified a band of 700bp in T-1 cultivar, and the L2900F/R primer amplified a band of 2.9kb in L-93 cultivar. In this study we developed the SCAR markers to identify and distinguish the inerseeded creeping bentgrass cultivars in a golf course green.

Usability of DNA Sequence Data: from Taxonomy over Barcoding to Field Detection. A Case Study of Oomycete Pathogens

  • Choi, Young-Joon;Thines, Marco
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.41-41
    • /
    • 2015
  • Oomycetes belong to the kingdom Straminipila, a remarkably diverse group which includes brown algae and planktonic diatoms, although they have previously been classified under the kingdom Fungi. These organisms have evolved both saprophytic and pathogenic lifestyles, and more than 60% of the known species are pathogens on plants, the majority of which are classified into the order Peronosporales (includes downy mildews, Phytophthora, and Pythium). Recent phylogenetic investigations based on DNA sequences have revealed that the diversity of oomycetes has been largely underestimated. Although morphology is the most valuable criterion for their identification and diversity, morphological species identification is time-consuming and in some groups very difficult, especially for non-taxonomists. DNA barcoding is a fast and reliable tool for identification of species, enabling us to unravel the diversity and distribution of oomycetes. Accurate species determination of plant pathogens is a prerequisite for their control and quarantine, and further for assessing their potential threat to crops. The mitochondrial cox2 gene has been widely used for identification, taxonomy and phylogeny of various oomycete groups. However, recently the cox1 gene was proposed as a DNA barcode marker instead, together with ITS rDNA. To determine which out of cox1 or cox2 is best suited as universal oomycete barcode, we compared these two genes in terms of (1) PCR efficiency for 31 representative genera, as well as for historic herbarium specimens, and (2) in terms of sequence polymorphism, intra- and interspecific divergence. The primer sets for cox2 successfully amplified all oomycete genera tested, while cox1 failed to amplify three genera. In addition, cox2 exhibited higher PCR efficiency for historic herbarium specimens, providing easier access to barcoding type material. In addition, cox2 yielded higher species identification success, with higher interspecific and lower intraspecific divergences than cox1. Therefore, cox2 is suggested as a partner DNA barcode along with ITS rDNA instead of cox1. Including the two barcoding markers, ITS rDNA and cox2 mtDNA, the multi-locus phylogenetic analyses were performed to resolve two complex clades, Bremia lactucae (lettuce downy mildew) and Peronospora effuse (spinach downy mildew) at the species level and to infer evolutionary relationships within them. The approaches discriminated all currently accepted species and revealed several previously unrecognized lineages, which are specific to a host genus or species. The sequence polymorphisms were useful to develop a real-time quantitative PCR (qPCR) assay for detection of airborne inoculum of B. lactucae and P. effusa. Specificity tests revealed that the qPCR assay is specific for detection of each species. This assay is sensitive, enabling detection of very low levels of inoculum that may be present in the field. Early detection of the pathogen, coupled with knowledge of other factors that favor downy mildew outbreaks, may enable disease forecasting for judicious timing of fungicide applications.

  • PDF

Identification of Brucella melitensis isolates originating from Mongolia and diagnostic real-time PCR evaluation using a specific SNP (몽골 유래 Brucella melitensis 동정 및 특이 SNP를 이용한 real-time PCR법에 의한 진단 평가)

  • Kang, Sung-Il;Kim, Ji-Yeon;Kim, Suk Mi;Lee, Jin Ju;Sung, So-Ra;Kim, Yeon-Hee;Jung, Suk Chan;Her, Moon
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.2
    • /
    • pp.105-110
    • /
    • 2015
  • A real-time PCR assay using hybridization probe (HybProbe) has been developed to detect Brucella (B.) melitensis strains. The primer and HybProbe sets were designed based on the gap gene of chromosome I with a specific single nucleotide polymorphism of B. melitensis. Specificity of the assay was confirmed by comparison to reference Brucella species and other related strains. In the melting curve analysis, B. melitensis generated a peak at $67^{\circ}C$ unlike those for other Brucella species observed at $61^{\circ}C$. Sensitivity of the assay for B. melitensis ranged from 20 ng to 200 fg of genomic DNA. The ability to identify 94 Mongolian B. melitensis isolates using the real-time PCR assay was identical to that of classical biotyping methods and differential multiplex PCR. These data showed that this new molecular technique is a simple and quick method for detecting B. melitensis, which will be important for the control and prevention of brucellosis.

Population Structure of Fusarium graminearum from Maize and Rice in 2009 in Korea

  • Lee, Seung-Ho;Lee, Jung-Kwan;Nam, Young-Ju;Lee, Soo-Hyung;Ryu, Jae-Gee;Lee, Theresa
    • The Plant Pathology Journal
    • /
    • v.26 no.4
    • /
    • pp.321-327
    • /
    • 2010
  • We performed diagnostic PCR assays and a phylogenetic analysis using partial sequences of TEF1 (translation elongation factor-1) to determine the trichothecene chemotypes and genetic diversity of F. graminearum isolates from maize and rice samples collected in 2009 in Korea. PCR using a species-specific primer set revealed a total of 324 isolates belonging to the putative F. graminearum species complex. PCR with trichothecene chemotypespecific primers revealed that the nivalenol (NIV) chemotype was predominant among the fungal isolates from rice (95%) in all provinces examined. In contrast, the predominant chemotype among the corn isolates varied according to region. The deoxynivalenol (DON) chemotype was found more frequently (66%) than the NIV chemotype in Gangwon Province, whereas the NIV chemotype (70%) was predominant in Chungbuk Province. Phylogenetic analysis showed that all DON isolates examined were clustered into lineage 7, while the NIV isolates resided within lineage 6 (F. asiaticum). Compared with previous studies, the lineage 6 isolates in rice have been predominantly maintained in southern provinces, while the dominance of lineage 7 in maize has been evident in Gangwon at a slightly reduced level.