• Title/Summary/Keyword: PCR marker

Search Result 787, Processing Time 0.117 seconds

Genetic Diversity of Toxoplasma gondii Strains from Different Hosts and Geographical Regions by Sequence Analysis of GRA20 Gene

  • Ning, Hong-Rui;Huang, Si-Yang;Wang, Jin-Lei;Xu, Qian-Ming;Zhu, Xing-Quan
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.3
    • /
    • pp.345-348
    • /
    • 2015
  • Toxoplasma gondii is a eukaryotic parasite of the phylum Apicomplexa, which infects all warm-blood animals, including humans. In the present study, we examined sequence variation in dense granule 20 (GRA20) genes among T. gondii isolates collected from different hosts and geographical regions worldwide. The complete GRA20 genes were amplified from 16 T. gondii isolates using PCR, sequence were analyzed, and phylogenetic reconstruction was analyzed by maximum parsimony (MP) and maximum likelihood (ML) methods. The results showed that the complete GRA20 gene sequence was 1,586 bp in length among all the isolates used in this study, and the sequence variations in nucleotides were 0-7.9% among all strains. However, removing the type III strains (CTG, VEG), the sequence variations became very low, only 0-0.7%. These results indicated that the GRA20 sequence in type III was more divergence. Phylogenetic analysis of GRA20 sequences using MP and ML methods can differentiate 2 major clonal lineage types (type I and type III) into their respective clusters, indicating the GRA20 gene may represent a novel genetic marker for intraspecific phylogenetic analyses of T. gondii.

Effect of implant surface microtopography by hydroxyapatite grit-blasting on adhesion, proliferation, and differentiation of osteoblast-like cell line, MG-63

  • Park, Sung-Jae;Bae, Sang-Bum;Kim, Su-Kyoung;Eom, Tae-Gwan;Song, Seung-Il
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.3
    • /
    • pp.214-224
    • /
    • 2011
  • Objective: This study examined the potential of the in vitro osteogenesis of microtopographically modified surfaces, RBM (resorbable blasting media) surfaces, which generate hydroxyapatite grit-blasting. Methods: RBM surfaces were modified hydroxyapatite grit-blasting to produce microtopographically modified surfaces and the surface morphology, roughness or elements were examined. To investigate the potential of the in vitro osteogenesis, the osteoblastic cell adhesion, proliferation, and differentiation were examined using the human osteoblast-like cell line, MG-63 cells. Osteoblastic cell proliferation was examined as a function of time. In addition, osteoblastic cell differentiation was verified using four different methods of an ALP activity assay, a mineralization assay using alizarin red-s staining, and gene expression of osteoblastic differentiation marker using RT-PCR or ELISA. Results: Osteoblastic cell adhesion, proliferation and ALP activity was elevated on the RBM surfaces compared to the machined group. The cells exhibited a high level of gene expression of the osteoblastic differentiation makers (osteonectin, type I collagen, Runx-2, osterix). imilar data was represented in the ELISA produced similar results in that the RBM surface increased the level of osteocalcin, osteopontin, TGF-beta1 and PGE2 secretion, which was known to stimulate the osteogenesis. Moreover, alizarin red-s staining revealed significantly more mineralized nodules on the RBM surfaces than the machined discs. Conclusion: RBM surfaces modified with hydroxyapatite grit-blasting stimulate the in vitro osteogenesis of MG-63 cells and may accelerate bone formation and increase bone-implant contact.

Identification of single nucleotide polymorphisms in the ACADS gene and their relationships with economic traits in Hanwoo (한우의 ACADS 유전자내의 SNP 탐색 및 경제형질과의 연관성 분석)

  • Oh, Jae-Don;Cheong, Il-Cheong;Sohn, Young-Gon;Kong, Hong-Sik
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.2
    • /
    • pp.219-226
    • /
    • 2012
  • The acyl-CoA dehydrogenase, C-2 to C-3 short chain (ACADS) gene is known to be related with fat metabolism, especially coverts the fat to the energy sources in cattle. In human, the mutations in this gene cause SCAD deficiency, which is one of the fatty acid metabolism disorders. The ACADS gene is located on bovine chromosome 17. The objective of this study was to identify SNPs in Hanwoo ACADS gene and identify the relationships with economic traits. In this study, two SNPs, T1570G SNP in exon 2 and G13917A SNP in exon 4, were observed. Moreover, in the coding region, 2 missense mutations, T (Cys) ${\rightarrow}$ G (Trp) mutation at 1570 bp and G (Arg) ${\rightarrow}$ A (Gln) mutation at 13917 bp, were observed. These mutations were subjected to the PCR-RFLP for typing 198 Hanwoo animals. The observed genotype frequency for T1570G was 0.135 (TT), 0.860 (TG) and 0.005 (GG), respectively. Also, 0.900 (GG) and 0.100 (GA) were observed for the G13917A mutation. The association of these SNPs with four economic traits, CW (Carcass Weight), BF (Backfat Thickness), LMA (Longissimus Muscle Area), MS (Marbling Score), were also observed. The results indicated that no significant results were observed in all four traits (P>0.05). This might indicate that further studies are ultimately needed to use the SNPs in ACADS gene in lager populations for effectively used for the marker assisted selection.

Association of FASN and SCD genes with fatty acid composition in broilers

  • Maharani, Dyah;Seo, Dong-Won;Choi, Nu-Ri;Jin, Shil;Cahyadi, Muhammad;Jo, Cheorun;Lee, Jun-Heon
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.3
    • /
    • pp.215-220
    • /
    • 2013
  • Fatty acids (FAs) were considered in activating nuclear hormone receptors that play significant roles in the cellular lipid metabolism by the regulation of several genes. Previously, fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD) genes have been known to regulating the FA metabolism. In this study, associations of FASN and SCD genes with fatty acid (FA) composition in broilers were investigated. Tissue samples from 95 Cobb 500 broilers were used for DNA extraction. The g.1222 A>G SNP located in intron 42 of FASN gene and 2 SNPs in SCD gene, one in exon 2 (g.3728A>G) and the other in exon 4 (g.12903G>A), were subjected for genotyping using PCR-RFLP method. One of the SNPs in SCD gene, SNP g.3728A>G had significant association with myristoleic acid (C14:1; P<0.05), palmitic acid (C16:0; P<0.05), palmitoleic acid (C16:1; P<0.05) and saturated FA (SFA; P<0.05). However, the SNP g.1222A>G in FASN gene had only suggestive association with arachidic acid (C20:0; P=0.08). The findings in this study suggest that the SNP in exon 2 of SCD gene can be used as a molecular marker for selecting birds having desirable FA composition in broilers.

Proteomic Analysis of Differentially Expressed Proteins in Bovine Endometrium with Endometritis

  • Choe, Chang-Yong;Park, Jeong-Won;Kim, Eun-Suk;Lee, Sung-Gyu;Park, Sun-Young;Lee, Jeong-Soon;Cho, Myung-Je;Kang, Kee-Ryeon;Han, Jae-Hee;Kang, Da-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.4
    • /
    • pp.205-212
    • /
    • 2010
  • Endometritis is one of the primary reasons for reproductive failure. In order to investigate endometritis-associated marker proteins, proteomic analysis was performed on bovine endometrium with endometritis. In bovine endometritis, desmin, $\alpha$-actin-2, heat-shock protein (HSP) 27, peroxiredoxin-6, luteinizing hormone receptor isoform 1, collectin-43 precursor, deoxyribonuclease-I (DNase-I), and MHC class I heavy chain (MHC-Ih) were up-regulated. In contrast, transferrin, interleukin-2 precursor, hemoglobin $\beta$ subunit, and potassium channel tetramerisation domaincontaining 11 (KCTD11) were down-regulated in comparison to normal endometrium. The proteomic results were validated by semiquantitative-PCR and immunoblot analysis. The mRNA levels of desmin, transferrin, $\alpha$-actin-2, HSP27, KCTD11, and MHC-Ih were up-regulated by over 1.5-fold, and showed a pattern similar to their proteomic profiles. Desmin and $\alpha$-actin-2 protein showed positive correlations between proteomic analysis and immunoblot analysis. These results suggest that desmin and $\alpha$-actin-2 may play important roles in endometritis-related function, and could be useful markers for the diagnosis of bovine endometritis.

A Novel Integrative Expression Vector for Sulfolobus Species

  • Choi, Kyoung-Hwa;Hwang, Sungmin;Yoon, Naeun;Cha, Jaeho
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1503-1509
    • /
    • 2014
  • With the purpose of facilitating the process of stable strain generation, a shuttle vector for integration of genes via a double recombination event into two ectopic sites on the Sulfolobus acidocaldarius chromosome was constructed. The novel chromosomal integration and expression vector pINEX contains a pyrE gene from S. solfataricus P2 ($pyrE_{sso}$) as an auxotrophic selection marker, a multiple cloning site with histidine tag, the internal sequences of malE and malG for homologous recombination, and the entire region of pGEM-T vector, except for the multiple cloning region, for propagation in E. coli. For stable expression of the target gene, an ${\alpha}$-glucosidase-producing strain of S. acidocaldarius was generated employing this vector. The malA gene (saci_1160) encoding an ${\alpha}$-glucosidase from S. acidocaldarius fused with the glutamate dehydrogenase ($gdhA_{saci}$) promoter and leader sequence was ligated to pINEX to generate pINEX_malA. Using the "pop-in" and "pop-out" method, the malA gene was inserted into the genome of MR31 and correct insertion was verified by colony PCR and sequencing. This strain was grown in YT medium without uracil and purified by His-tag affinity chromatography. The ${\alpha}$-glucosidase activity was confirmed by the hydrolysis of $pNP{\alpha}G$. The pINEX vector should be applicable in delineating gene functions in this organism.

Inhibitory Effect of Curcumin on WT1 Gene Expression in Patient Leukemic Cells

  • Anuchapreeda, Songyot;Limtrakul, Pornngarm;Thanarattanakorn, Pattra;Sittipreechacharn, Somjai;Chanarat, Prasit
    • Archives of Pharmacal Research
    • /
    • v.29 no.1
    • /
    • pp.80-87
    • /
    • 2006
  • Leukemias are common worldwide. Wilms'tumor1 (WT1) protein is highly expressed in leukemic blast cells of myeloid and lymphoid origin. Thus, WT1 mRNA serves as a tumor marker for leukemias detection and monitoring disease progression. Curcumin is well known for its anticancer property. The objective of this study was to investigate the effect of curcumin on WT1 gene expression in patient leukemic cells. The leukemic cells were collected from 70 childhood leukemia patients admitted at Maharaj Nakorn Chiang Mai Hospital, Chiang Mai, Thailand, in the period July 2003 to February 2005. There were 58 cases of acute lymphoblastic leukemia (ALL), 10 cases of acute myeloblastic leukemia (AML), and 2 cases of chronic myelocytic leukemia (CML). There were 41 males and 29 females ranging from 1 to 15 years old. Leukemic cells were cultured in the presence or absence of 10 mM curcumin for 48 h. WT1 mRNA levels were determined by RT-PCR. The result showed that curcumin reduced WT1 gene expression in the cells from 35 patients (50%). It affected the WT1 gene expression in 4 of 8 relapsed cases (50%), 12 of 24 cases of drug maintenance (50%), 7 of 16 cases of completed treatment (44%), and 12 of 22 cases of new patients (54%). The basal expression levels of WT1 gene in leukemic patient cells as compared to that of K562 cells were classified as low level (1-20%) in 6 of 20 cases (30%), medium level (21-60%) in 12 of 21 cases (57%), and high level (61-100%) in 17 of 23 cases (74%). In summary, curcumin decreased WT1 mRNA in patient leukemic cells. Thus, curcumin treatment may provide a lead for clinical treatment in leukemic patients in the future.

Effect of Valproic acid, a Histone Deacetylase Inhibitor, on the Expression of Pluripotency and Neural Crest Specific Marker Genes in Murine Multipotent Skin Precursor Cells

  • Hong, Ji-Hoon;Park, Sang-Kyu;Roh, Sang-Ho
    • International Journal of Oral Biology
    • /
    • v.35 no.4
    • /
    • pp.209-214
    • /
    • 2010
  • Cells that have endogenous multipotent properties can be used as a starting source for the generation of induced pluripotent cells (iPSC). In addition, small molecules associated with epigenetic reprogramming are also widely used to enhance the multi- or pluripotency of such cells. Skinderived precursor cells (SKPs) are multipotent, sphereforming and embryonic neural crest-related precursor cells. These cells can be isolated from a juvenile or adult mammalian dermis. SKPs are also an efficient starting cell source for reprogramming and the generation of iPSCs because of the high expression levels of Sox2 and Klf4 in these cells as well as their endogenous multipotency. In this study, valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, was tested in the generation of iPSCs as a potential enhancer of the reprogramming potential of SKPs. SKPs were isolated from the back skins of 5-6 week old C57BL/6 X DBA/2 F1 mice. After passage 3, the SKPs was treated with 2 mM of VPA and the quantitative real time RT-PCR was performed to quantify the expression of Oct4 and Klf4 (pluripotency specific genes), and Snai2 and Ngfr (neural crest specific genes). The results show that Oct4 and Klf4 expression was decreased by VPA treatment. However, there were no significant changes in neural crest specific gene expression following VPA treatment. Hence, although VPA is one of the most potent of the HDAC inhibitors, it does not enhance the reprogramming of multipotent skin precursor cells in mice.

Implant surface treatments affect gene expression of Runx2, osteogenic key marker

  • Na, Young;Heo, Seong-Joo;Kim, Seong-Kyun;Koak, Jai-Young
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.2
    • /
    • pp.91-96
    • /
    • 2009
  • STATEMENT OF PROBLEM. The aim of this study was to study the effects of various surface treatments to a titanium surface on the expression of Runx2 in vitro. MATERIAL AND METHODS. Human Osteosarcoma TE-85 cells were cultured on machined, sandblasted, or anodic oxidized cpTi discs. At various times of incubation, the cells were collected and then processed for the analysis of mRNA expression of Runx2 using reverse transcription-PCR. RESULTS. The expression pattern of Runx2 mRNA was differed according to the types of surface treatment. When the cells were cultured on the untreated control culture plates, the gene expression of Runx2 was not increased during the experiments. In the case of that the cells were cultured on the machined cpTI discs, the expression level was intermediate at the first day, but increased constitutively to day 5. In cells on sandblasted cpTi discs, the expression level was highest in the first day sample and the level was maintained to 5 days. In cells on anodized cpTi discs, the expression level increased rapidly to 3 days, but decreased slightly in the 5-th day sample. CONCLUSION. Different surface treatments may contribute to the regulation of osteoblast function by influencing the level of gene expression of key osteogenic factors.

INDUCTION OF MITOCHONDRIAL DNA DELETION BY IONIZING RADIATION IN HUMAN LUNG FIBROBLAST IMR-90 CELLS

  • Eom, Hyeon-Soo;Jung, U-Hee;Park, Hae-Ran;Jo, Sung-Kee
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.2
    • /
    • pp.49-54
    • /
    • 2009
  • Mitochondrial DNA (mtDNA) deletion is a well-known marker for oxidative stress and aging and also contributes to their unfavorable effects in cultured cells and animal tissues. This study was conducted to investigate the effect of ionizing radiation (IR) on mtDNA deletion and the involvement of reactive oxygen species (ROS) in this process in human lung fibroblast (IMR-90) cells. Young IMR-90 cells at population doubling (PD) 39 were irradiated with $^{137}Cs$ $\gamma$-rays and the intracellular ROS level was determined by 2',7'-dichlorofluorescein diacetate (DCFH-DA) and mtDNA common deletion (4977bp) was detected by nested PCR. Old cells at PD 55 and $H_2O_2$-treated young cells were compared as the positive control. IR increased the intracellular ROS level and mtDNA 4977 bp deletion in IMR-90 cells dose-dependently. The increases of ROS level and mtDNA deletion were also observed in old cells and $H_2O_2$-treated young cells. To confirm the increased ROS level is essential for mtDNA deletion in irradiated cells, the effects of N-acetylcysteine (NAC) on IRinduced ROS and mtDNA deletion were examined. 5 mM NAC significantly attenuated the IR-induced ROS increase and mtDNA deletion. These results suggest that IR induces the mtDNA deletion and this process is mediated by ROS in IMR-90 cells.