• Title/Summary/Keyword: PCR (Polymerase Chain Reaction)

Search Result 2,809, Processing Time 0.035 seconds

Quercetin Attenuates the Production of Pro-Inflammatory Cytokines in H292 Human Lung Epithelial Cells Infected with Pseudomonas aeruginosa by Modulating ExoS Production

  • Hye In Ahn;Hyun-Jae Jang;Ok-Kyoung Kwon;Jung-Hee Kim;Jae-Hoon Oh;Seung-Ho Kim;Sei-Ryang Oh;Sang-Bae Han;Kyung-Seop Ahn;Ji-Won Park
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.430-440
    • /
    • 2023
  • The type three secretion system (T3SS) is a major virulence system of Pseudomonas aeruginosa (P. aeruginosa). The effector protein Exotoxin S (ExoS) produced by P. aeruginosa is secreted into the host cells via the T3SS. For the purpose of an experiment on inhibitors with regard to ExoS secretion, we developed a sandwich-type enzyme-linked immunosorbent assay (ELISA) system. Quercetin was selected because it has a prominent ExoS inhibition effect and also is known to have anti-inflammatory and antioxidant effects on mammalian cells. In this study, we investigated the effects of quercetin on the expression and secretion of ExoS using ELISA and Western blot analysis methods. The results showed that the secretion of ExoS was significantly decreased by 10 and 20 µM of quercetin. Also, popB, popD, pscF, and pcrV which are composed of the T3SS needle, are reduced by quercetin at the mRNA level. We also confirmed the inhibitory effect of quercetin on cytokines (IL-6, IL-1β, and IL-18) in P. aeruginosa-infected H292 cells by real-time polymerase chain reaction (PCR) and ELISA. Collectively, quercetin inhibits the secretion of ExoS by reducing both ExoS production and the expression of the needle protein of T3SS. Furthermore, these results suggest that quercetin has the potential to be used as an anti-toxic treatment for the inflammatory disease caused by P. aeruginosa infection.

The Effect of Baekhogainsam-tang on Metabolism through Modulation of the Gut Microbiota and Gene Expression in High-Fat Diet Induced Metabolic Syndrome Animal Model (고지방식이로 유도된 대사증후군 모델 동물에서 백호가인삼탕(白虎加人參湯)의 장내미생물 및 유전자 발현 조절을 통한 대사 개선 효과)

  • Min-Jin Cho;Song-Yi Han;Soo Kyoung Lim;Eun-Ji Song;Young-Do Nam;Hojun Kim
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.33 no.3
    • /
    • pp.1-15
    • /
    • 2023
  • Objectives We aimed to find out the improvement effect of Baekhogainsam-tang (Baihu Jia Renshen-tang, BIT) on metabolic syndrome and alteration of microbiota and gene expression. Methods We used male C57BI/6 mice and randomly assigned them into three groups. Normal control group was fed 10% kcal% fat diet, high-fat diet (HFD) group was fed 45% kcal% fat diet and 10% fructose water. BIT group was fed same diet as HFD group and treated by BIT for once daily, 6 days per week, total 8 weeks. We measured their body weight and food intake every week and performed oral glucose tolerance test 1 week before the end of the study. Then we collected the blood sample to measure triglyceride, total cholesterol, high-density lipoprotein cholesterol, insulin, and hemoglobin A1c. We harvested tissue of liver, muscle, fat, and large intestine for quantitative polymerase chain reaction (qPCR) and histopathological examination. Fresh fecal samples were collected from each animal to verify alterations of gut microbiota and we used RNA from liver tissue for microarray analysis. Results The body weight and fat weight of BIT group were reduced compared to HFD group. The qPCR markers usually up-regulated in metabolic syndrome were decreased in BIT group. Bacteroides were higher in BIT group than other groups. There were also differences in gene expressions between two groups such as Cyp3a11 and Scd1. Conclusions We could find out BIT can ameliorate metabolic syndrome and suggest its effect is related to gut microbiota composition and gene expression pattern.

In-silico annotation of the chemical composition of Tibetan tea and its mechanism on antioxidant and lipid-lowering in mice

  • Ning Wang ;Linman Li ;Puyu Zhang;Muhammad Aamer Mehmood ;Chaohua Lan;Tian Gan ;Zaixin Li ;Zhi Zhang ;Kewei Xu ;Shan Mo ;Gang Xia ;Tao Wu ;Hui Zhu
    • Nutrition Research and Practice
    • /
    • v.17 no.4
    • /
    • pp.682-697
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Tibetan tea is a kind of dark tea, due to the inherent complexity of natural products, the chemical composition and beneficial effects of Tibetan tea are not fully understood. The objective of this study was to unravel the composition of Tibetan tea using knowledge-guided multilayer network (KGMN) techniques and explore its potential antioxidant and hypolipidemic mechanisms in mice. MATERIALS/METHODS: The C57BL/6J mice were continuously gavaged with Tibetan tea extract (T group), green tea extract (G group) and ddH2O (H group) for 15 days. The activity of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) in mice was detected. Transcriptome sequencing technology was used to investigate the molecular mechanisms underlying the antioxidant and lipid-lowering effects of Tibetan tea in mice. Furthermore, the expression levels of liver antioxidant and lipid metabolism related genes in various groups were detected by the real-time quantitative polymerase chain reaction (qPCR) method. RESULTS: The results showed that a total of 42 flavonoids are provisionally annotated in Tibetan tea using KGMN strategies. Tibetan tea significantly reduced body weight gain and increased T-AOC and SOD activities in mice compared with the H group. Based on the results of transcriptome and qPCR, it was confirmed that Tibetan tea could play a key role in antioxidant and lipid lowering by regulating oxidative stress and lipid metabolism related pathways such as insulin resistance, P53 signaling pathway, insulin signaling pathway, fatty acid elongation and fatty acid metabolism. CONCLUSIONS: This study was the first to use computational tools to deeply explore the composition of Tibetan tea and revealed its potential antioxidant and hypolipidemic mechanisms, and it provides new insights into the composition and bioactivity of Tibetan tea.

Facial Paralysis and Myositis Following the H3N2 Influenza Vaccine in a Dog

  • Ju-Hyun An;Ye-In Oh;So-Hee Kim;Su-Min Park;Jeong-Hwa Lee;Ga-Hyun Lim;Kyung-Won Seo;Hwa-Young Youn
    • Journal of Veterinary Clinics
    • /
    • v.40 no.5
    • /
    • pp.336-340
    • /
    • 2023
  • A dog (2-year old, female, Shih-Tzu) presented with hyperthermia and right-sided facial paralysis characterized by the inability to close the right eye and drooling from the right side of the mouth after H3N2 influenza vaccination [A/Canine/Korea/01/07(H3N2) strain; Caniflu-Max, Bionote, Hwaseong, Gyeonggi-do, ROK]. To determine the cause of the fever and neurological symptoms, physical examination, ophthalmic examination, thoracic and abdominal radiography, abdominal ultrasonography, complete blood counts, serum chemistry values, and electrolyte levels were determined. In addition, Cerebrospinal fluid analysis, antinuclear antibody test, fever of unknown origin polymerase chain reaction (PCR) panel, tick-borne pathogen PCR panel were performed. As a result, hyperthermia, leukocytosis, and elevated C-reactive protein were confirmed. In addition, neurological examination revealed decreased right eyelid reflexes, corneal reflexes, threat response, and facial sensation, it was possible to suspect problems with the trigeminal and facial nerves of the cranial nerve. Magnetic resonance imaging revealed a lesion suggestive of myositis in the right muscular lesion at atlanto-occipital junction level on site of vaccine injection. Therefore, right-sided facial paralysis was tentatively determined to be a secondary cause of nerve damage caused by myositis. The patient was treated with immunosuppressants such as prednisolone and mycophenolate mofetil. After 3 months of immunosuppressant therapy, the patient's symptoms improved.

Prevalence of Toxin Genes and Antibiotic Resistance Profiles of Vibrio vulnificus strains isolated from Jeju Island (제주도에서 분리된 비브리오패혈증균의 독소 유전자 분포 및 항생제 내성)

  • Eunok Kang;Man Jae Cho;Ye-Seul Heo;Eun A Koh
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.5
    • /
    • pp.381-389
    • /
    • 2023
  • Vibrio vulnificus, the most fatal waterborne and foodborne pathogens of 50% fatality rate in the world, is common in seawater and occurs particularly in warmer months. In this study, we investigated the toxin genes using reverse transcription-polymerase chain reaction (RT-PCR), antibiotic resistance status using Vitek, and genetic characteristics using pulsed-field gel electrophoresis (PFGE) of different V. vulnificus strains isolated from the Jeju Island seawater, distribution fishery products, and fish tanks. We examined a total of 487 samples and isolated a total of 46 strains (including overlapping strains) of V. vulnificus, 44 strains from seawater and 1 strain each from fishery products and fish tank. We detected toxin gene vvhA in all 46 strains and rtxA, viu in 8 strains (17.4%) and 9 strains (19.6%) strains, respectively. Antibiotic resistance tests indicated 100% resistance to cefoxitin antibiotics. The PFGE analysis of the 46 strains identified a total of 6 types showed 100% homology and the degree of similarity was 81.3-98.0%; however, there were no similarity between the regions and samples. These results indicate that V. vulnificus isolated from the seawater, fishery products, and fish tanks should be continuously monitored as cases of food poisoning caused by V. vulnificus with toxin genes have been reported in Jeju Island.

MiR-188-5p regulates the proliferation and differentiation of goat skeletal muscle satellite cells by targeting calcium/calmodulin dependent protein kinase II beta

  • Jing Jing;Sihuan Zhang;Jinbo Wei;Yuhang Yang;Qi Zheng;Cuiyun Zhu;Shuang Li;Hongguo Cao;Fugui Fang;Yong Liu;Ying-hui Ling
    • Animal Bioscience
    • /
    • v.36 no.12
    • /
    • pp.1775-1784
    • /
    • 2023
  • Objective: The aim of this study was to reveal the role and regulatory mechanism of miR-188-5p in the proliferation and differentiation of goat muscle satellite cells. Methods: Goat skeletal muscle satellite cells isolated in the pre-laboratory were used as the test material. First, the expression of miR-188-5p in goat muscle tissues at different developmental stages was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). In addition, miR-188-5p was transfected into goat skeletal muscle satellite cells by constructing mimics and inhibitors of miR-188-5p, respectively. The changes of differentiation marker gene expression were detected by qPCR method. Results: It was highly expressed in adult goat latissimus dorsi and leg muscles, goat fetal skeletal muscle, and at the differentiation stage of muscle satellite cells. Overexpression and interference of miR-188-5p showed that miR-188-5p inhibited the proliferation and promoted the differentiation of goat muscle satellite cells. Target gene prediction and dual luciferase assays showed that miR-188-5p could target the 3'untranslated region of the calcium/calmodulin dependent protein kinase II beta (CAMK2B) gene and inhibit luciferase activity. Further functional studies revealed that CAMK2B promoted the proliferation and inhibited the differentiation of goat muscle satellite cells, whereas si-CAMK2B restored the function of miR-188-5p inhibitor. Conclusion: These results suggest that miR-188-5p inhibits the proliferation and promotes the differentiation of goat muscle satellite cells by targeting CAMK2B. This study will provide a theoretical reference for future studies on the molecular mechanisms of skeletal muscle development in goats.

Diagnostic value of serum procalcitonin and C-reactive protein in discriminating between bacterial and nonbacterial colitis: a retrospective study

  • Jae Yong Lee;So Yeon Lee;Yoo Jin Lee;Jin Wook Lee;Jeong Seok Kim;Ju Yup Lee;Byoung Kuk Jang;Woo Jin Chung;Kwang Bum Cho;Jae Seok Hwang
    • Journal of Yeungnam Medical Science
    • /
    • v.40 no.4
    • /
    • pp.388-393
    • /
    • 2023
  • Background: Differentiating between bacterial and nonbacterial colitis remains a challenge. We aimed to evaluate the value of serum procalcitonin (PCT) and C-reactive protein (CRP) in differentiating between bacterial and nonbacterial colitis. Methods: Adult patients with three or more episodes of watery diarrhea and colitis symptoms within 14 days of a hospital visit were eligible for this study. The patients' stool pathogen polymerase chain reaction (PCR) testing results, serum PCT levels, and serum CRP levels were analyzed retrospectively. Patients were divided into bacterial and nonbacterial colitis groups according to their PCR. The laboratory data were compared between the two groups. The area under the receiver operating characteristic curve (AUC) was used to evaluate diagnostic accuracy. Results: In total, 636 patients were included; 186 in the bacterial colitis group and 450 in the nonbacterial colitis group. In the bacterial colitis group, Clostridium perfringens was the commonest pathogen (n=70), followed by Clostridium difficile toxin B (n=60). The AUC for PCT and CRP was 0.557 and 0.567, respectively, indicating poor discrimination. The sensitivity and specificity for diagnosing bacterial colitis were 54.8% and 52.6% for PCT, and 52.2% and 54.2% for CRP, respectively. Combining PCT and CRP measurements did not increase the discrimination performance (AUC, 0.522; 95% confidence interval, 0.474-0.571). Conclusion: Neither PCT nor CRP helped discriminate bacterial colitis from nonbacterial colitis.

Anti-inflammatory, Anti-aging, and Sebum Inhibitory Effects of Osmanthus fragrans Flower Extract (목서 꽃 추출물의 항염, 항노화 및 피지 억제 효능)

  • Hyung-Min Kim;Yeon Su Jeong;Sehyun Kim;Jeong Hun Cho;Yong Deog Hong;Won-Seok Park
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.50 no.2
    • /
    • pp.171-178
    • /
    • 2024
  • In this study, we aimed to determine the various effects of Osmanthus fragrans (O. fragrans) flower extract on the skin in order to utilize it as a cosmetic material. For this purpose, Osmanthus fragrans flower extract (OFFE) of Jeju Island was prepared and used in the experiment. The experiments were evaluated by the quantitative real-time polymerase chain reaction (qRT-PCR) and lipid droplet staining assay. First, the OFFE decreased the gene expressions of three representative pro-inflammatory cytokines (IL-8, IL-6, and IL-1α) and an inflammation-related enzyme, PTGS2 induced by poly I:C in epidermal keratinocytes. In addition, the OFFE increased the gene expression levels of collagen (COL1A1) and elastin (ELN) in dermal fibroblasts. Further, the OFFE showed the inhibitory effect in sebum production by linoleic acid in sebocytes. Therefore, from this study, it is expected that OFFE can be used as a natural cosmetic material for anti-inflammatory, anti-aging, and sebum inhibitory efficacy.

Identification of relevant differential genes to the divergent development of pectoral muscle in ducks by transcriptomic analysis

  • Fan Li;Zongliang He;Yinglin Lu;Jing Zhou;Heng Cao;Xingyu Zhang;Hongjie Ji;Kunpeng Lv;Debing Yu;Minli Yu
    • Animal Bioscience
    • /
    • v.37 no.8
    • /
    • pp.1345-1354
    • /
    • 2024
  • Objective: The objective of this study was to identify candidate genes that play important roles in skeletal muscle development in ducks. Methods: In this study, we investigated the transcriptional sequencing of embryonic pectoral muscles from two specialized lines: Liancheng white ducks (female) and Cherry valley ducks (male) hybrid Line A (LCA) and Line C (LCC) ducks. In addition, prediction of target genes for the differentially expressed mRNAs was conducted and the enriched gene ontology (GO) terms and Kyoto encyclopedia of genes and genomes signaling pathways were further analyzed. Finally, a protein-to-protein interaction network was analyzed by using the target genes to gain insights into their potential functional association. Results: A total of 1,428 differentially expressed genes (DEGs) with 762 being up-regulated genes and 666 being down-regulated genes in pectoral muscle of LCA and LCC ducks identified by RNA-seq (p<0.05). Meanwhile, 23 GO terms in the down-regulated genes and 75 GO terms in up-regulated genes were significantly enriched (p<0.05). Furthermore, the top 5 most enriched pathways were ECM-receptor interaction, fatty acid degradation, pyruvate degradation, PPAR signaling pathway, and glycolysis/gluconeogenesis. Finally, the candidate genes including integrin b3 (Itgb3), pyruvate kinase M1/2 (Pkm), insulin-like growth factor 1 (Igf1), glucose-6-phosphate isomerase (Gpi), GABA type A receptor-associated protein-like 1 (Gabarapl1), and thyroid hormone receptor beta (Thrb) showed the most expression difference, and then were selected to verification by quantitative real-time polymerase chain reaction (qRT-PCR). The result of qRT-PCR was consistent with that of transcriptome sequencing. Conclusion: This study provided information of molecular mechanisms underlying the developmental differences in skeletal muscles between specialized duck lines.

Human Endometrium Derived Mesenchymal Stem Cells with Aberrant NOD1 Expression Are Associated with Ectopic Endometrial Lesion Formation

  • Chunmei Li;Suiyu Luo;Ai Guo;Ying Su;Yuhui Zhang;Yan Song;Mei Liu;Lu Wang;Yuanyuan Zhang
    • International Journal of Stem Cells
    • /
    • v.17 no.3
    • /
    • pp.309-318
    • /
    • 2024
  • Nucleotide-binding oligomerization domain 1 (NOD1), a cytosolic pattern recognition receptor protein, plays a crucial role in innate immune responses. However, the functional expression of NOD1 in mesenchymal stem cells (MSCs) derived from endometriosis remains unclear. The aim of this study was to explore the functions of NOD1 in ectopic endometrial lesions. Tissues and MSCs were isolated from both normal endometrium and endometriosis. Immunohistochemistry and real time quantitative polymerase chain reaction (RT-qPCR) were used to determine the expression of NOD1 in the tissues/MSCs. Quantification of various cytokines was performed using RT-qPCR and enzyme-linked immunosorbent assay. To confirm the proliferation, invasion/migration, and apoptotic viabilities of the samples, Cell Counting Kit-8, clonogenic formation, transwell assays, and apoptotic experiments were conducted. Higher levels of NOD1 expression were detected in the ectopic-MSCs obtained from endometriosis compared to those from the endometrium. The expression of interleukin-8 was higher in the ectopic-MSCs than in the eutopic-MSCs. Pretreatment with NOD1 agonist significantly enhanced the proliferation and invasion/migration of eutopic-MSCs. Additionally, the NOD1 inhibitor ML-130 significantly reduced the proliferation, clone formation, invasion, and migration abilities of the ectopic-MSCs, having no effect on their apoptosis capacity. Our findings suggest that the expression of NOD1 in ectopic-MSCs may contribute to the progression of ectopic endometrial lesions.