• 제목/요약/키워드: PCG

검색결과 85건 처리시간 0.025초

매미나방의 미토콘드리아 게놈 분석 (Complete Mitochondrial Genome of the Gypsy Moth, Lymantria dispar (Lepidoptera: Erebidae))

  • 정나라;남영우;이원훈
    • 한국응용곤충학회지
    • /
    • 제61권3호
    • /
    • pp.507-512
    • /
    • 2022
  • 매미나방은 산림과 과수에 심각한 피해를 입히는 해충이다. 본 연구에서는 국내 매미나방의 미토콘드리아 게놈(15,548 bp)을 분석하였다. 13개의 PCG와 2개의 rRNA를 연결한 서열(13,568 bp)을 사용한 23개의 미토콘드리아 게놈의 계통분석 결과, 분석한 매미나방은 다른 지역의 매미나방과 같은 과에 속하며 각각의 과(Erebidae, Euteliidae, Noctuidae, Nolidae, Notodontidae)들은 높은 노드수치로 단계통을 형성하였다.

국내 뒷흰가는줄무늬밤나방의 미토콘드리아 게놈(mitochondrial genome) 분석 (Complete Mitochondrial Genome of Mythimna loreyi (Duponchel, 1827) (Lepidoptera: Noctuidae) in South Korea)

  • 정나라;정다경;이관석;이원훈
    • 한국응용곤충학회지
    • /
    • 제62권4호
    • /
    • pp.347-354
    • /
    • 2023
  • 뒷흰가는줄무늬밤나방은 쌀, 밀, 옥수수와 같은 농작물에 피해를 주는 해충이다. 본 연구에서는 국내 뒷흰가는줄무늬밤나방의 미토콘드리아게놈(15,314b)을 분석하였다. 13개의PCG와2개의 rRNA (13,376bp)를 연결한 서열을 사용한 계통발생 분석 결과, 뒷흰가는줄무늬밤나방과 멸강나방 사이의 가장 높은 노드 수치로 자매분류군을 형성하였다. 밤나방상과(Noctuoidea)의 각 과(Noctuidae, Euteliidae, Nolidae, Erebidae 및 Notodontidae)들은 가장 높은 노드수치로 단계통을 형성하였다.

동맥경화 진단을 위한 맥파전달속도 측정시스템 개발 및 재현성 평가 (Development of a Pulse Wave Velocity Measurement System and Assessment of the System Reproducibility for the Diagnosis of Arteriosclerosis)

  • 이낙범;임재중;박영배;전영주
    • 대한한의진단학회지
    • /
    • 제9권1호
    • /
    • pp.112-124
    • /
    • 2005
  • Background: PWV is determined by dividing the distance by the time taken for the pulses traveling between two measuring sites, used as a marker of arterial stiffness and an important indicator for cardiovascular disease. Methods: A PWV measurement system, which offers a non-invasive, simple method of measurement, and simultaneous recording of six signlas(ECG, PCG and four pulse waves from carotid, femoral, radial and dorsalis pedis arteries) was developed. Seventeen healthy subjects with a mean age of 33 years(22 to 52) without any cardiovascular disease were participated for the experiment. Two observers(A and B) performed two consecutive measurements from the same subject in a random order. For the evaluation of stability and accuracy of the PWV measurement system, reproducibility of PWV from between-observer were also evaluated. Results: PWV $values(Mean{\pm}SD)$ measured by A were $7.07{\pm}1.48m/s$, $8.43{\pm}1.14m/s$ , $8.09{\pm}0.98m/s$ for aorta, arm, and leg, respectively. The values obtained from B were $6.76{\pm}1.00m/s$, $7.97{\pm}0.80m/s$, and $7.97{\pm}0.72m/s$ for aorta, arm, and leg, respectively. Between-observer $differences(mean{\pm}SEM)$ from the aorta, arm and leg were $0.14{\pm}0.15m/s$, $0.18{\pm}0.10m/s$ and $0.07{\pm}0.10m/s$. Reproducibility coefficients(2SD) from the aorta, arm, and leg were 0.62m/s, 0.84m/s and 0.86m/s. Correlation coefficients were significantly higher in aortic PWV, 0.93, compared to the coefficients for arm and leg. Coefficient of variance which reflects the reproducibility of the system ranged from $4.4{\sim}5.8%$ in all regional PWV. , Conclusion: Reproducibility of PWV in the study shows that the developed system has reliable and reproducible characteristics. The PWV measurement system used for the study offers comfortable and simple operation and provides accurate analysis and results with high reproducibility. Results of the PWV measurement system could contribute to various clinical applications in the future.

  • PDF

NecroX-5 protects mitochondrial oxidative phosphorylation capacity and preserves PGC1α expression levels during hypoxia/reoxygenation injury

  • Vu, Thi Thu;Kim, Hyoung Kyu;Le, Thanh Long;Nyamaa, Bayalagmaa;Song, In-Sung;To, Thanh Thuy;Nguyen, Quang Huy;Marquez, Jubert;Kim, Soon Ha;Kim, Nari;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권2호
    • /
    • pp.201-211
    • /
    • 2016
  • Although the antioxidant and cardioprotective effects of NecroX-5 on various in vitro and in vivo models have been demonstrated, the action of this compound on the mitochondrial oxidative phosphorylation system remains unclear. Here we verify the role of NecroX-5 in protecting mitochondrial oxidative phosphorylation capacity during hypoxia-reoxygenation (HR). Necrox-5 treatment ($10{\mu}M$) and non-treatment were employed on isolated rat hearts during hypoxia/reoxygenation treatment using an ex vivo Langendorff system. Proteomic analysis was performed using liquid chromatography-mass spectrometry (LC-MS) and non-labeling peptide count protein quantification. Real-time PCR, western blot, citrate synthases and mitochondrial complex activity assays were then performed to assess heart function. Treatment with NecroX-5 during hypoxia significantly preserved electron transport chain proteins involved in oxidative phosphorylation and metabolic functions. NecroX-5 also improved mitochondrial complex I, II, and V function. Additionally, markedly higher peroxisome proliferator-activated receptor-gamma coactivator-$1{\alpha}$ ($PGC1{\alpha}$) expression levels were observed in NecroX-5-treated rat hearts. These novel results provide convincing evidence for the role of NecroX-5 in protecting mitochondrial oxidative phosphorylation capacity and in preserving $PGC1{\alpha}$ during cardiac HR injuries.

Reproducibility of Regional Pulse Wave Velocity in Healthy Subjects

  • Im Jae-Joong;Lee, Nak-Bum;Rhee Moo-Yong;Na Sang-Hun;Kim, Young-Kwon;Lee, Myoung-Mook;Cockcroft John R.
    • International Journal of Vascular Biomedical Engineering
    • /
    • 제4권2호
    • /
    • pp.19-24
    • /
    • 2006
  • Background: Pulse wave velocity (PWV), which is inversely related to the distensibility of an arterial wall, offers a simple and potentially useful approach for an evaluation of cardiovascular diseases. In spite of the clinical importance and widespread use of PWV, there exist no standard either for pulse sensors or for system requirements for accurate pulse wave measurement. Objective of this study was to assess the reproducibility of PWV values using a newly developed PWV measurement system in healthy subjects prior to a large-scale clinical study. Methods: System used for the study was the PP-1000 (Hanbyul Meditech Co., Korea), which provides regional PWV values based on the measurements of electrocardiography (ECG), phonocardiography (PCG), and pulse waves from four different sites of arteries (carotid, femoral, radial, and dorsalis pedis) simultaneously. Seventeen healthy male subjects with a mean age of 33 years (ranges 22 to 52 years) without any cardiovascular disease were participated for the experiment. Two observers (observer A and B) performed two consecutive measurements from the same subject in a random order. For an evaluation of system reproducibility, two analyses (within-observer and between-observer) were performed, and expressed in terms of mean difference ${\pm}2SD$, as described by Bland and Altman plots. Results: Mean and SD of PWVs for aorta, arm, and leg were $7.07{\pm}1.48m/sec,\;8.43{\pm}1.14m/sec,\;and\;8.09{\pm}0.98m/sec$ measured from observer A and $6.76{\pm}1.00m/sec,\;7.97{\pm}0.80m/sec,\;and\;\7.97{\pm}0.72m/sec$ from observer B, respectively. Between-observer differences ($mean{\pm}2SD$) for aorta, arm, and leg were $0.14{\pm\}0.62m/sec,\;0.18{\pm\}0.84m/sec,\;and\;0.07{\pm}0.86m/sec$, and the correlation coefficients were high especially 0.93 for aortic PWV. Within-observer differences ($mean{\pm}2SD$) for aorta, arm, and leg were $0.01{\pm}0.26m/sec,\;0.02{\pm}0.26m/sec,\;and\;0.08{\pm}0.32m/sec$ from observer A and $0.01{\pm}0.24m/sec,\;0.04{\pm}0.28m/sec,\;and\;0.01{\pm}0.20m/sec$ from observer B, respectively. All the measurements showed significantly high correlation coefficients ranges from 0.94 to 0.99. Conclusion: PWV measurement system used for the study offers comfortable and simple operation and provides accurate analysis results with high reproducibility. Since the reproducibility of the measurement is critical for the diagnosis in clinical use, it is necessary to provide an accurate algorithm for the detection of additional features such as flow wave, reflection wave, and dicrotic notch from a pulse waveform. This study will be extended for the comparison of PWV values from patients with various vascular risks for clinical application. Data acquired from the study could be used for the determination of the appropriate sample size for further studies relating various types of arteriosclerosis-related vascular disease.

  • PDF