• Title/Summary/Keyword: PCD Cutting Tools

Search Result 22, Processing Time 0.03 seconds

Micro Cutting of Tungsten Carbides with SEM Direct Observation Method

  • jung, Heo-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.770-779
    • /
    • 2004
  • This paper describes the micro cutting of wear resistant tungsten carbides using PCD (Poly-Crystalline Diamond) cutting tools in performance with SEM (Scanning Electron Microscope) direct observation method. Turning experiments were also carried out on this alloy (V50) using a PCD cutting tool. One of the purposes of this study is to describe clearly the cutting mechanism of tungsten carbides and the behavior of WC particles in the deformation zone in orthogonal micro cutting. Other purposes are to achieve a systematic understanding of machining characteristics and the effects of machining parameters on cutting force, machined surface and tool wear rates by the outer turning of this alloy carried out using the PCD cutting tool during these various cutting conditions. A summary of the results are as follows: (1) From the SEM direct observation in cutting the tungsten carbide, WC particles are broken and come into contact with the tool edge directly. This causes tool wear in which portions scrape the tool in a strong manner. (2) There are two chip formation types. One is where the shear angle is comparatively small and the crack of the shear plane becomes wide. The other is a type where the shear angle is above 45 degrees and the crack of the shear plane does not widen. These differences are caused by the stress condition which gives rise to the friction at the shear plane. (3) The thrust cutting forces tend to increase more rapidly than the principal forces, as the depth of cut and the cutting speed are increased preferably in the orthogonal micro cutting. (4) The tool wear on the flank face was larger than that on the rake face in the orthogonal micro cutting. (5) Three components of cutting force in the conventional turning experiments were different in balance from ordinary cutting such as the cutting of steel or cast iron. Those expressed a large value of thrust force, principal force, and feed force. (6) From the viewpoint of high efficient cutting found within this research, a proper cutting speed was 15 m/min and a proper feed rate was 0.1 mm/rev. In this case, it was found that the tool life of a PCD tool was limited to a distance of approximately 230 m. (7) When the depth of cut was 0.1 mm, there was no influence of the feed rate on the feed force. The feed force tended to decrease, as the cutting distance was long, because the tool was worn and the tool edge retreated. (8) The main tool wear of a PCD tool in this research was due to the flank wear within the maximum value of $V_{max}$ being about 260 $\mu\textrm{m}$.

Machining Characteristics of Cemented Carbides in Micro Cutting within SEM

  • Heo, Sung-Jung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.3
    • /
    • pp.35-42
    • /
    • 2004
  • This research describes that the cutting characteristics and tool wear behavior in the micro cutting of three kinds of wear resistant cemented carbides (WC-Co; V40, V50 and V60) using PCD (Poly Crystalline Diamond) and PCBN (Poly crystalline Cubic Boron Nitride) cutting tools by use of the SEM (Scanning Electron Microscope) direct observation method. The purpose of this research is to present reasonable cutting conditions from the viewpoint of high efficient cutting refer to a precise finished surface and tool wear. Summary of the results is as follows: (1) The cutting forces tend to increase as the increase of the weight percentage of WC particles, and the thrust forces was larger than the principal forces in the cutting of WC-Co. These phenomena were different from the ordinary cutting such as cutting of steel or cast iron. (2) The cutting speed hardly influenced the thrust force, because of the frictional force between the cutting tool edge and small WC particles at low cutting speed region such as 2$\mu\textrm{m}$/s. It seemed that the thrust cutting force occurred by the contact between the flank face and work material near the cutting edge. (3) The wear mechanism for PCD tools is abrasion by hard WC particles of the work materials, which leads diamond grain to be detached from the bond. (4) From the SEM direct observation in cutting the WC-Co, it seems that WC particles are broken and come into contact with the tool edge directly. This causes tool wear, resulting in severe tool damage. (5) In the orthogonal micro cutting of WC-Co, the tool wear in the flank face was formed bigger than that in the rake face on orthogonal micro cutting. And the machining surface integrity on the side of the cutting tool with a negative rake angle was better than that with a positive one, as well as burr in the case of using the cutting tool with a negative rake angle was formed very little compared to the that with a positive one.

Chip Formation of WC-Co on Micro-cutting in SEM (SEM내 미소절삭에 의한 초경합금재의 칩 생성 기구)

  • 허성중;김원일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.604-607
    • /
    • 2003
  • This study investigates the micro-cutting of cemented carbides using PCD(polycrystalline diamond) and PCBN(polycrystalline cubic boron nitride) cutting tools are performed with SEM direct observation method. The purpose of this study is to make clear the cutting mechanism of cemented carbides and the fracture of WC particles at the plastic deformation zone in orthogonal micro-cutting. And also to achieve systematic understanding, the effect of machining parameter on chip formation and machined surface was investigated, including cutting speed. depth of cut and various tool rake angle.

  • PDF

Characteristics of Surface Roughness in Micro fuming using PCD Tools (PCD공구를 이용 미소가공시 표면거칠기 특성)

  • 한복수;이소영
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.31-38
    • /
    • 2001
  • This paper deals with the micro turning property of setting angle using diamond tool. The bed of the system has used the granite which has the thermal and vibrational characteristics superior to the cast iron bed for the common machine tool. To minimize the inner and outer vibration of the fuming system, an air pad system was manufactured and tested. The aero-static spindle system which has the excellent rotation accuracy was designed and manufactured. As a result of the micro-cutting test on aluminum alloy, tool setting angel have effected on surface roughness. From the results, the micro-cutting conditions hope to provide the useful actual data using in industrial fields.

  • PDF

Comparison of TiAlN DLC and PCD Tool Wear in CFRP Drilling (CFRP 드릴링에서 TiAlN DLC 코팅과 PCD의 공구마모 비교)

  • Baek, Jong-Hyun;Kim, Su-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.77-83
    • /
    • 2022
  • A high-hardness tool material is required to reduce extreme abrasive wear when drilling carbon fiber reinforced plastic (CFRP). Single-crystal diamond is the hardest material in the world, but it is very expensive to be used as a cutting tool. Polycrystalline diamond (PCD) is a diamond grit fused at a high temperature and pressure, and diamond-like carbon (DLC) is an amorphous carbon with high hardness. This study compares DLC coatings and PCD inserts to conventional TiAlN-coated tungsten carbide drills. In fiberglass and carbon fiber reinforced polymer drilling, the tool wear of DLC-coated carbide was approximately half that of TiAlN-coated tools, and slight tool wear occurred in the case of PCD insert end drills.

Thin Film Adhesion and Cutting Performance in Diamond-Coated Carbide Tools

  • Jong Hee Kim;Dae Young Jung;Hee Kap Oh
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.105-109
    • /
    • 1997
  • The effects of surface conditions of the C-2 cemented carbide substrate on the adhesion of diamond film were investigated. The substrates were pretreated for different times with Murakami's reagent and then the acid solution of an H2SO4-H2O2. The adhesion strength was estimated by a peeling area around the Rockwell-A indentation. The cutting performance of the diamond-coated tools was evaluated by measuring flank wears in dry turning of Al-17% Si alloy. The morphology of deposited diamond crystallites was dominated by (111) and (220) surfaces with a cubooctahedral shape. The diamond film quality was hardly affected by the surface conditions of the substrate. The variation of tool life with longer substrate etching times resulted from a compromies between the increase of film adhesion at the interface and the decrease of toughness at the substrate surface. The coated tools were mainly deteriorated by chipping and flaking of the diamond film form a lock of adhesion strength, differently from the wear phenomena of PCD tools.

  • PDF

A Study on the Coated Characteristics of Ceramic Tools (세라믹공구 재료의 피복특성에 관한 연구)

  • Lee, Myeong-Je;Im, Hong-Seop;Yu, Bong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.900-906
    • /
    • 2000
  • Ceramic, PCD and CBN tools are available for the difficult-to-cut-materials such as hardened carbon tool steel, stainless steel, Inconel 718 and etc. Ceramic tools are likely to be chipped and abruptly broken before the appearance of normal wear in turning. Ceramic tools are suitable for continuous in turning, not for intermittent in milling. In this study, TiN/TiCN multi-layer coated ceramic tools were found to restrain the chipping, breaking and early fracture and to increase the critical cutting speed owing to TiN/TiCN multi-layer coating in Arc Ion Plating of PVD method.

A Study on the Coated Characteristics of Ceramic Tools (코팅공구의 절삭성능에 관한 연구)

  • 유봉환
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.96-101
    • /
    • 2000
  • Ceramic, PCD and CBN tools are available for the difficult-to-cut-materials such as hardened carbon tool steel, stainless steel, Inconel 718 and etc.. Ceramic toolsare likely to be chipped and abruptly broken before the appearance of normal wear in turning. Ther2efore ceramic tools are suitable for continuous cut in turning not for intermittent in milling. In this study, TiN/TiCN multi-layer coated ceramic tools were found to restrain the chipping, breaking and early fracture and to increase the critical cutting speed owing to TiN/TiCN multi-layer coating in Arc Ion Plating of PVD method.

  • PDF

A Study on the Tool Wear and Prediction of CBN, Poly Crystal and Single Crystal Diamond Tools in Cutting of Nickel (니켈절삭시 CBN, 소결 및 단결정 다이아몬드 공구의 마멸과 예측에 관한 연구)

  • 성기석;김정두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.120-130
    • /
    • 1993
  • Generally, the machinability of materials that have a good mechanical properties is poor. For materials having a high strength, high toughness, high strength in high temperature and wear resistance, it is difficult to remove a chip from work materials. These properties are well shown in a Nickel, so this metal is used in machine materials, semi-conductor industry, metal mold and optical fields etc. But it is limitted in use because of high cost and poor machinability. In this study, the cutting of pure Nickel was conducted to examine wear of CBN, poly crystal diamond (PCD) and single crystal diamond (SCD) tools. From the result, the CBN tool is superior to poly crystal diamond tools or single crystal diamond tools in terms of tool wear and tool wear is predictable from experimental data base.