• Title/Summary/Keyword: PCB-TE2A-luminol

Search Result 1, Processing Time 0.014 seconds

Selective tyrosine conjugation with a newly synthesized PCB -TE2A-luminol bifunctional chelator

  • Subramani Rajkumar;Hyun Park;Abhinav Bhise;Seong Hwan Cho;Jung Young Kim;Kyo Chul Lee;Jeongsoo Yoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.2
    • /
    • pp.85-91
    • /
    • 2021
  • Selective amino acid conjugation of bulky antibodies is a valuable asset for real-time diagnosis and therapy. However, selective conjugation incorporating a chelate-bearing radioactive atom into an antibody without affecting its immunoreactivity is a challenging task. A bifunctional chelator (BFC), a selective amino acid-targeting probe, and a linker have been developed to overcome this problem. Here, we report the synthesis of a novel propylene cross-bridged chelator (PCB)-1,8-N,N'-bis-(carboxymethyl)-1,4,8,11-tetraazacyclotetradecane (TE2A)-luminol BFC via a click reaction and radiolabel it with a 64Cu ion for tyrosine-selective conjugation of trastuzumab. In the initial optimization study, we tried different oxidative addition conditions such as electro-oxidation, hemin, horseradish peroxidase, iodogen tube, chloramine-T, and iodo beads. In this study, up to 82% of 64Cu-PCB-TE2A-luminol was conjugated with the antibody in an iodo bead-catalyzed oxidative addition reaction with an isolated yield of 24.4%.