• Title/Summary/Keyword: PCB windings

Search Result 11, Processing Time 0.025 seconds

Coreless PCB transformer in HB ZVS DC/DC converter for vehicle FPL lamp power circuit (Coreless PCB 변압기를 이용한 자동차 전원 구동 FPL 램프 전원 회로)

  • Lee Wan-Yun;Chung Gyo-Bum
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.253-256
    • /
    • 2002
  • This paper proposes the application of coreless PCB transformer to Half-Bridge (HB), Zero-voltage-Switched (ZVS) DC/DC converter for FPL lamp with electronic ballast in vehicle. The designed 5 coreless PCB transformers for ballast driving voltage are parallel-connected in primary windings and series-connected in secondary windings. Coreless PCB transformer is designed to have spiral winding in order to transfer higher energy. The computer simulations of the proposed power circuit show coreless PCB transformer to have good performance.

  • PDF

Circuit Properties and Device Characteristics of Printed Circuit Board Windings Employed as Contactless Energy Transfer Device

  • Nho Jaehyun;Lim Wonseok;Choi Byungcho;Ahn Taeyoung
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.11-16
    • /
    • 2001
  • Recent publications showed that a pair of neighboring printed circuit board (PCB) windings can be used as a contactless energy transfer device. As a continued study on this area, the current paper presents the modeling, analysis, and application of the neighboring PCB windings with an emphasis on their circuit properties and device characteristics as a contactless energy transfer device. Theoretical results of the paper are confirmed with experiments on a prototype contactless energy transfer circuit that delivers 24W output power at $68\%$ efficiency through two 35mm-diameter PCB windings separated each other by 2.4mm.

  • PDF

A New Contactless Battery Charger Using Coupled Printed Circuit Board Windings (자기적으로 결합된 PCB권선을 이용한 무접점 배터리 충전기)

  • No, Jae-Hyeon;Cha, Heon-Nyeong;Choe, Byeong-Jo;An, Tae-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.1
    • /
    • pp.16-22
    • /
    • 2002
  • The Proposed contactless charger employs a Pair of neighboring Printed circuit board (PCB) windings as a contactless energy transfer device, thereby making it amenable to low-Profile designs and suitable for applications to the portable telecommunication/computing electroncis in which stringent requirements for height, space, and reliability have to be met. The performance of the proposed charger is confirmed with experiments on a prototype charger developed for cellular phones

A study on an optimal design of the high frequency transformer in LLC DC to DC resonant converter (LLC DC to DC 공진 컨버터의 고주파 변압기 최적화 설계에 관한 연구)

  • Jong-Hae Kim
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.587-600
    • /
    • 2023
  • This paper presents an optimal design of the slim type high frequency transformer used in the LLC DC to DC resonant converter for 65-inch UHD-TV with the rated power of 315W. This paper also performs an optimal design of the slim type high frequency through core loss analysis, AC winding loss analysis, and optimization design of the winding arrangement of the LLC resonant transformer. Particularly, the high-efficiency and slim type high frequency transformer based on the obtained results from theoretical analysis in this paper is constructed in the interleaved and vertical winding structures of its transformer to realize the winding method of automatic type and minimize AC winding loss. The primary and secondary windings of the slim type high frequency transformer the vertical winding structure proposed in this paper used the Litz-wire windings, PCB and copper plate windings, respectively. Finally, an optimal design of the slim type high frequency transformer proposed in this paper was carried out through the experimental results to confirm the validity of theoretical analysis based on the simulation results using Maxwell 2D and 3D tool.

Balance Winding Scheme to Reduce Common-Mode Noise in Flyback Transformers

  • Fu, Kaining;Chen, Wei
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.296-306
    • /
    • 2019
  • The flyback topology is being widely used in power adapters. The coupling capacitance between primary and secondary windings of a flyback transformer is the main path for common-mode (CM) noise conduction. A Y-cap is usually used to effectively suppress EMI noise. However, this results in problems in space, cost, and the danger of safety leakage current. In this paper, the CM noise behaviors due to the electric field coupling of the transformer windings in a flyback adapter with synchronous rectification are analyzed. Then a scheme with balance winding is proposed to reduce the CM noise with a transformer winding design that eliminates the Y-cap. The planar transformer has advantages in terms of its low profile, good heat dissipation and good stray parameter consistency. Based on the proposed scheme, with the help of a full-wave simulation tool, the key parameter influences of the transformer PCB winding design on CM noise are further analyzed. Finally, a PCB transformer for an 18W adapter is designed and tested to verify the effectiveness of the balance winding scheme.

Coreless Printed Circuit Board (PCB) Transformers - Fundamental Characteristics and Application Potential

  • Hui S. Y.;Tang S. C.;Chung H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.1-6
    • /
    • 2001
  • In this article, the fundamental concept, characteristics and application potentials of coreless printed-circuit-board (PCB) transformers are described. Coreless PCB transformers do not have the limitations associated with magnetic cores, such as the frequency limitation, magnetic saturation and core losses. In addition, they eliminate the manual winding process and its associated problems, including labor cost, reliability problems and difficulties in ensuring transformer quality in the manufacturing process. The parameters of the printed windings can be precisely controlled in modern PCB technology. Because of the drastic reduction in the vertical dimension, coreless PCB transformers can achieve high power density and are suitable for applications in which stringent height requirements for the circuits have to be met. A transformer's power density of $24W/cm^2$ has been reported in a power conversion application. When used in an isolation amplifier application, coreless PCB transformers tested so far enable the amplifier to achieve a remarkable linear frequency range of 1MHz, which is almost eight times higher than the frequency range of 120kHz in existing Integrated-Circuit products. PCB materials offer extremely high isolation voltage, typically from 15kV to 40kV, which is higher than many other isolation means such as optocouplers. It is envisaged that coreless PCB transformers can replace traditional core-based transformers in some industrial applications. Their application potentials deserve more attention and exploration.

  • PDF

Development of Low-profile DC/DC Converter Using PCB Transformer (PCB변압기를 이용한 초박형 DC/DC컨버터 개발)

  • Kim, Dong-Hyung;Choi, Byung-Cho;Lee, Ki-Jo
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.476-479
    • /
    • 2002
  • The proposed DC/DC converter employs a pair of neighboring printed-circuit-board windings as a coreless transformer Thus, the proposed DC/DC converter can be fabricated In an ultra low-profile fashion. The performance of the proposed low-profile DC/DC converter is confirmed with experiments on a prototype converter that delivers 58W of power at the maximum efficiency of $84\%$.

  • PDF

Back EMF Design of an AFPM Motor using PCB Winding by Quasi 3D Space Harmonic Analysis Method

  • Jang, Dae-Kyu;Chang, Jung-Hwan;Jang, Gun-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.730-735
    • /
    • 2012
  • This paper presents a method to design the waveform of a back electromotive force (back EMF) of an axial flux permanent magnet (AFPM) motor using printed circuit board (PCB) windings. When the magnetization distribution of permanent magnet (PM) is given, the magnetic field in the air gap region is calculated by the quasi three dimensional (3D) space harmonic analysis (SHA) method. Once the flux density distribution in the winding region is determined, the required shape of the back EMF can be obtained by adjusting the winding distribution. This can be done by modifying the distance between patterns of PCB to control the harmonics in the winding distribution. The proposed method is verified by finite element analysis (FEA) results and it shows the usefulness of the method in eliminating a specific harmonic component in the back EMF waveform of a motor.

Development of An Open Frame Type High Power Density Switching Converter (개방형 고밀도 스위칭 컨버터의 개발)

  • 오용승;김희준
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.9
    • /
    • pp.468-474
    • /
    • 2003
  • This paper describes the development of an open frame type high power density switching converter. It is based on the active clamp forward converter with synchronous rectifier, and packaged by using the open frame and multi-layer printed circuit board (PCB) technology to achieve the higher power density. Furthermore, the windings of transformer and inductor are also realized by multi-layer PCB so that it also contributes to achieve higher power density. Through the experiment on the prototype converter of 50[W], it is confirmed that power density of 50[W/i$n_3$] and maximum efficiency of over 91[%] are obtained.

A New Contactless Battery Charger Using Planner Printed Circuit Board Windings (자기적으로 결합된 PCB 권선을 이용한 무접점 배터리 충전기)

  • Nho Jaehyun;Kang Yonghan;Choi Byungcho;Ahn Taeyoung
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.634-637
    • /
    • 2001
  • The proposed contactless charger employs a pair of neighboring printed circuit board windings as a contactless energy transfer device, thereby making it amenable to low-profile designs and suitable for applications to the portable telecommunication/computing electronics in which stringent requirements for height, space, and reliability have to be met. The performance of the proposed charger is confirmed with experiments on a prototype charger developed for cellular phones.

  • PDF