• Title/Summary/Keyword: PCB inspection machine

Search Result 28, Processing Time 0.029 seconds

A Study on the Development of Inspection System of SMD Mounted on Cream Solder Using Machine Vision (머신비젼을 이용한 크림솔더상에 장착된 SMD의 검사시스템 개발에 관한 연구)

  • Shm, Dong-Won;Park, Kyoung-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.2
    • /
    • pp.67-74
    • /
    • 2003
  • This paper presents the development of the Inspection machine for SMD mounted on cream solder of PCB. There are mounting errors of SMD such as misalignment, missing part, wrong orientation, wrong polarity and so on. The main hardware of the system consists of a machine vision part and a motion control part. Operating software has been developed in GUI environment to help user convenience. The Inspection Jobs consist of two procedures, that is, creation of the inspection reference data and automatic inspection. The Inspection reference data has a tree structure of linked list including PCB information, blocks, components, windows, and inspection methods. This paper presents versatile inspection methods which include a section length method, a projection method and histogram method. Therefore, user can choose the suitable procedure for various components. Finally, the automatic Inspection procedure using the reference data checks the mounting errors of components.

  • PDF

Automatic Extraction of Component Window for Auto-Teaching of PCB Assembly Inspection Machines (PCB 조립검사기의 자동티칭을 위한 부품윈도우 자동추출 방법)

  • Kim, Jun-Oh;Park, Tae-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1089-1095
    • /
    • 2010
  • We propose an image segmentation method for auto-teaching system of PCB (Printed Circuit Board) assembly inspection machines. The inspection machine acquires images of all components in PCB, and then compares each image with its standard image to find the assembly errors such as misalignment, inverse polarity, and tombstone. The component window that is the area of component to be acquired by camera, is one of the teaching data for operating the inspection machines. To reduce the teaching time of the machine, we newly develop the image processing method to extract the component window automatically from the image of PCB. The proposed method segments the component window by excluding the soldering parts as well as board background. We binarize the input image by use of HSI color model because it is difficult to discriminate the RGB colors between components and backgrounds. The linear combination of the binarized images then enhances the component window from the background. By use of the horizontal and vertical projection of histogram, we finally obtain the component widow. The experimental results are presented to verify the usefulness of the proposed method.

Matching Algorithm for PCB Inspection Using Vision System (Vision System을 이용한 PCB 검사 매칭 알고리즘)

  • An, Eung-Seop;Jang, Il-Young;Lee, Jae-Kang;Kim, Il-Hwan
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.67-74
    • /
    • 2001
  • According as the patterns of PCB (Printed Circuit Board) become denser and complicated, quality and accuracy of PCB influence the performance of final product. It's attempted to obtain trust of 100% about all of parts. Because human inspection in mass-production manufacturing facilities are both time-consuming and very expensive, the automation of visual inspection has been attempted for many years. Thus, automatic visual inspection of PCB is required. In this paper, we used an algorithm which compares the reference PCB patterns and the input PCB patterns are separated an object and a scene by filtering and edge detection. And than compare two image using pattern matching algorithm. We suggest an defect inspection algorithm in PCB pattern, to be satisfied low cost, high speed, high performance and flexibility on the basis of $640{\times}480$ binary pattern.

  • PDF

Automatic Extraction of Component Inspection Regions from Printed Circuit Board by Image Clustering (영상 클러스터링에 의한 인쇄회로기판의 부품검사영역 자동추출)

  • Kim, Jun-Oh;Park, Tae-Hyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.472-478
    • /
    • 2012
  • The inspection machine in PCB (printed circuit board) assembly line checks assembly errors by inspecting the images inside of the component inspection region. The component inspection region consists of region of component package and region of soldering. It is necessary to extract the regions automatically for auto-teaching system of the inspection machine. We propose an image segmentation method to extract the component inspection regions automatically from images of PCB. The acquired image is transformed to HSI color model, and then segmented by several regions by clustering method. We develop a modified K-means algorithm to increase the accuracy of extraction. The heuristics generating the initial clusters and merging the final clusters are newly proposed. The vertical and horizontal projection is also developed to distinguish the region of component package and region of soldering. The experimental results are presented to verify the usefulness of the proposed method.

Accurate PCB Outline Extraction and Corner Detection for High Precision Machine Vision (고정밀 머신 비전을 위한 정확한 PCB 윤곽선과 코너 검출)

  • Ko, Dong-Min;Choi, Kang-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.53-58
    • /
    • 2017
  • Recently, advance in technology have increased the importance of visual inspection in semiconductor inspection areas. In PCB visual inspection, accurate line estimation is critical to the accuracy of the entire process, since it is utilized in preprocessing steps such as calibration and alignment. We propose a line estimation method that is differently weighted for the line candidates using a histogram of gradient information, when the position of the initial approximate corner points is known. Using the obtained line equation of the outline, corner points can be calculated accurately. The proposed method is compared with the existing method in terms of the accuracy of the detected corner points. The proposed method accurately detects corner points even when the existing method fails. For high-resolution frames of 3.5mega-pixels, the proposed method is performed in 89.01ms.

  • PDF

Measurement and Correction of PCB Alignment Error Using Two Cameras (2대의 카메라를 이용한 PCB의 위치 오차 측정 및 보정)

  • 김천환;신동원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.302-302
    • /
    • 2000
  • This paper presents the measurement and correction of PCB alignment errors for PCB-manufacturing machines. The conventional PCB-manufacturing machine doesn't have enough accuracy to accommodate the demand for high-resolution circuit pattern and high-density mounting capacity of electronic chips. It is because of alignment errors of PCB loaded to the PCB-manufacturing machine. Therefore, this study focuses on the development of the system which is able to measure and correct alignment errors whit high-accuracy. An automatic optical inspection part measures the PCB alignment error using two cameras, and the high-accuracy 3-axis stage makes correct of these error. The operating system is run in the environment of Window 98 (or NT). Finally we implemented this system to PCB screen printer and PCB exposure system.

  • PDF

PCB Defects Detection using Connected Component Classification (연결 성분 분류를 이용한 PCB 결함 검출)

  • Jung, Min-Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.113-118
    • /
    • 2011
  • This paper proposes computer visual inspection algorithms for PCB defects which are found in a manufacturing process. The proposed method can detect open circuit and short circuit on bare PCB without using any reference images. It performs adaptive threshold processing for the ROI (Region of Interest) of a target image, median filtering to remove noises, and then analyzes connected components of the binary image. In this paper, the connected components of circuit pattern are defined as 6 types. The proposed method classifies the connected components of the target image into 6 types, and determines an unclassified component as a defect of the circuit. The analysis of the original target image detects open circuits, while the analysis of the complement image finds short circuits. The machine vision inspection system is implemented using C language in an embedded Linux system for a high-speed real-time image processing. Experiment results show that the proposed algorithms are quite successful.

Wavelet Transform Based Defect Detection for PCB Inspection Machines (PCB 검사기를 위한 웨이블릿 변환 기반의 결함 검출 방법)

  • Youn, Seung-Geun;Kim, Young-Gyu;Park, Tae-Hyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1508-1515
    • /
    • 2017
  • This paper proposes the defect detection method for automatic inspection machines in printed circuit boards (PCBs) manufacturing system. The defects of PCB such as open, short, pin hole and scratch can be detected by comparing the standard image and the target image. The standard image is obtained from CAD file such as ODB++ format, and the target image is obtained by arranging, filtering and binarization of captured PCB image. Since the PCB size is too large and image resolution is too high, the image processing requires a lot of memory and computational time. The wavelet transform is applied to compress the standard and target images, which results in reducing the memory and computational time. To increase the inspection accuracy, we utilize the he HH-domain as well as LL-domain of the transformed images. Experimental results are finally presented to show the performance improvement of the proposed method.

Measurement and Correction of PCB Alignment Error for Screen Printer Using Machine Vision (1) (머신비전을 이용한 PCB 스크린인쇄기의 정렬오차측정 및 위치보정 (1))

  • 신동원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.88-95
    • /
    • 2003
  • This paper presents the measurement and correction method of PCB alignment errors for PCB screen printer. Electronic equipment is getting smaller and yet must satisfy high performance standard. Therefore, there is a great demand for PCB with high density. However conventional PCB screen printer doesn't have enough accuracy to accommodate the demand fur high-resolution circuit pattern and high-density mounting capacity of electronic chips. It is because the alignment errors of PCB occur when it is loaded to the screen printer. Therefore, this study focuses on the development of the system which is able to measure and correct alignment errors with high-accuracy. An automatic optical inspection part measures the PCB alignment errors using machine vision, and the high-accuracy 3-axis stage makes correction for these errors. This system used two CCD cameras to get images of two fiducial marks of PCB. The geometrical relationship between PCB, cameras, and xy$\theta$ stage is derived, and analytical equations for alignment errors are also obtained. The unknown parameters including camera declining angles and etc. can be obtained by initialization process. Finally, the proposed algorithm is verified by experiments by using test bench.

Measurement and Correction of PCB Alignment Error for Screen Printer Using Machine Vision (2) (머신비전을 이용한 PCB 스크린인쇄기의 정렬오차측정 및 위치보정 (2))

  • 신동원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.96-104
    • /
    • 2003
  • This paper presents the measurement and correction method of PCB alignment errors for PCB screen printer. Electronic equipment is getting smaller and yet must satisfy high performance standard. Therefore, there is a great demand for PCB with high density. However conventional PCB screen printer doesn't have enough accuracy to accommodate the demand for high-resolution circuit pattern and high-density mounting capacity of electronic chips. It is because the alignment errors of PCB occur when it is loaded to the screen printer. Therefore, this study focuses on the development of the system which is able to measure and correct alignment errors with high-accuracy. An automatic optical inspection part measures the PCB alignment errors using machine vision, and the high-accuracy 3-axis stage makes correction for these errors. This system used two CCD cameras to get images of two fiducial marks of PCB. The centers of fiducial marks are obtained by using moment, gradient method. The first method is calculating the centroid by using first moment of blob, and the latter method is calculating the center of the circle whose equation is obtained by curve-fitting the boundaries of fiducial mark. The operating system used to implement the whole set-up is carried in Window 98 (or NT) environment. Finally we implemented this system to PCB screen printer.