• Title/Summary/Keyword: PCB(printed circuit board) scrap

Search Result 5, Processing Time 0.017 seconds

Pyro-metallurgical Treatment of used OA Parts for the Recovery of Valuable Metals (유가금속(有價金屬) 회수(回收)를 위한 PCB 스크랩의 건식처리기술(乾式處理技術))

  • Shin, Dong-Yeop;Lee, Sang-Dong;Jeong, Hyeon-Bu;You, Byung-Don;Han, Jeong-Whan;Jung, Jin-Ki
    • Resources Recycling
    • /
    • v.17 no.2
    • /
    • pp.46-54
    • /
    • 2008
  • It is well known that PCB (Printed Circuit Board) is a complex mixture of various metals. In this study, pyro-metallurgical process was investigated to extract valuable metallic components from the PCB scrap. PCB scrap was shredded and oxidized to remove plastic materials, and then, quantitative analysis were made. 15 mass %$Al_2O_3-45$ mass %CaO-40 mass %$SiO_2$ and 32 mass %$SiO_2-20$ mass %$Al_2O_3-38$ mass %CaO-10 mass %MgO, were chosen as basic slag compositions which are determined based on the quantitative analysis of PCB scrap. During experiments a super kanthal rotating furnace was used to melt and separate metallic components. Moreover the revolution effect on was the recovery of valuable metals from PCB scrap also investigated.

Viscosity Change of Al2O3-SiO2-CaO Slag System with Used Electronic Scrap (산화처리된 PCB 스크랩을 첨가한 Al2O3-SiO2-CaO 3성분계 슬래그의 점도)

  • Kwon, Eui-Hyuk;Han, Sin-Suk;Ji, Jae-Hong;Han, Jeong-Whan;You, Byung-Don;Kim, Byung-Soo;Lee, Jae-Chun
    • Korean Journal of Materials Research
    • /
    • v.13 no.4
    • /
    • pp.239-245
    • /
    • 2003
  • In order to explore the possibility to extract precious metals from PCB(Printed Circuit Board) scrap by gravity separation, a high temperature melting process was adopted, from the recycling view point, to investigate the influence of viscosity on A1$_2$$O_3$-CaO$-SiO_2$ slag system composed of PCB scrap. For optimizing the pre-treatment process of PCB scrap, an experimental condition for the complete calcination and oxidation of organic materials in PCB scrap was established and a quantitative analysis of oxidized PCB scrap was also carrie out. It was found that 6 hours were enough for the complete oxidation of PCB scrap at 1273 K in an atmosphere condition. A slag, l5wt%$A1_2$$O_3$-45wt%CaO-40wt%SiO$_2$, was chosen as a basic slag composition which is determined based on the quantitative analysis of PCB scrap. Viscosities were measured in slag systems both made from pure fluxes and from PCB scrap with additional fluxes. Slag viscosities composed of pure fluxes were measured to be 5.29 poise and 30.52 poise at temperatures of 1773 and 1573 K, whereas that of PCB scrap with additional fluxes were 3.37 poise and 69.89 poise, respectively.

Melting of PCB scrap for the Extraction of Metallic Components (PCB스크랩으로부터 유가금속성분 회수를 위한 용융처리)

  • Kwon Eui-Hyuk;Jang Sung-Hwan;Han Jeong-Whan;Kim Byung-Su;Jeong Jin-Ki;Lee Jae-Chun
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.31-36
    • /
    • 2005
  • It is well known that PCB (Printed Circuit Board) is a complex mixture of various metals mixed with various types of plastics and ceramics. In this study, high temperature pyre-metallurgical process was investigated to extract valuable metallic components from the PCB scrap. For this purpose, PCB scrap was shredded and oxidized to remove plastic materials, and then, quantitative analyses were made. After the oxidation of the PCB scrap, $30.6wt\%SiO_2,\;19.3wt\%Al_2O_3\;and\;14wt{\%}CaO$ were analyzed as major oxides, and thereafter, a typical composition of $32wt\%SiO_2-20wt\%Al_2O_3-38wt{\%}CaO-10wt\%MgO$ was chosen as a basic slag system for the separation of metallic components. Moreover a size effect of crushed PCB scrap was also investigated. During experiments a high frequency induction furnace was used to melt and separate metallic components. As a result, it was found that the size of oxidized PCB scrap was needed to be less 0.9 m to make a homogeneous liquid slag and to recycle metallic components over $95\%$.

Analysis of Commercial Recycling Technology and Research Trend of Printed Circuit Boards in Korea (국내 인쇄회로기판의 재활용 상용화 기술 및 연구동향 분석)

  • An, HyeLan;Kang, Leeseung;Lee, Chan-Gi
    • Resources Recycling
    • /
    • v.26 no.4
    • /
    • pp.9-18
    • /
    • 2017
  • Recently, the amount of electronic scrap is rapidly increasing due to the rapid growth of the electronics industry. Among the components of electronic scrap, the printed circuit board(PCB) is an important recycling target which includes common metals, precious metals, and rare metals such as gold, silver, copper, tin, nickel and so on. In Korea, however, PCB recycling technologies are mainly commercialized by some major companies, and other process quantities are not accurately counted. According to present situation, several urban mining companies, research institutes, and universities are conducting research on recovery of valuable metals from PCBs and/or reusing them as raw materials that is different from existing commercialization process developed by major companies. In this study, we analyzed not only current status of collection/disposal process and recycling of waste PCBs in Korea but also the trend of recycling technologies in order to help resource circulation from waste PCBs become more active.

The effects of current density and nickel content on copper electrowinning by energy saving system (에너지절약형 동(Cu)전해채취 및 전류밀도의 영향)

  • Lee, Hoo-In;Lee, Jae-Chun;Park, Jin-Tae;Kim, Min-Seuk;Sohn, Jeong-Soo;Koyama, Kazuya
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.386-387
    • /
    • 2006
  • This study is about the recycling technology of scrap a PCB(printed circuit board) produced in home appliances or automobile industry. And we develop the recycling technology of cooper (Cu)which is contained to leaching solution. In stead of electrolytic collecting in existing sulphuric atmosphere, we apply process using the ammonia solution which is used in economizing energy. So m the process of electrolyzing scrap a PCB through the leaching and separation, we examine the effect of the nickel contained to the solution and the cooper degree of purity which is changed according to current density.

  • PDF