• Title/Summary/Keyword: PCA(Principle Component Analysis)

Search Result 182, Processing Time 0.021 seconds

Effective Face Detection Using Principle Component Analysis and Support Vector Machine (주성분 분석과 서포트 백터 머신을 이용한 효과적인 얼굴 검출 시스템)

  • Kang, Byoung-Doo;Kwon, Oh-Hwa;Seong, Chi-Young;Jeon, Jae-Deok;Eom, Jae-Sung;Kim, Jong-Ho;Lee, Jae-Won;Kim, Sang-Kyoon
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.11
    • /
    • pp.1435-1444
    • /
    • 2006
  • We present an effective and real-time face detection method based on Principal Component Analysis(PCA) and Support Vector Machines(SVMs). We extract simple Haar-like features from training images that consist of face and non-face images, reinterpret the features with PCA, and select useful ones from the large number of extracted features. With the selected features, we construct a face detector using an SVM appropriate for binary classification. The face detector is not affected by the size of a training data set in a significant way, so that it showed 90.1 % detection rates with a small quantity of training data. it can process 8 frames per second for $320{\times}240$ pixel images. This is an acceptable processing time for a real-time system.

  • PDF

Development of Prediction Model using PCA for the Failure Rate at the Client's Manufacturing Process (주성분 분석을 이용한 고객 공정의 불량률 예측 모형 개발)

  • Jang, Youn-Hee;Son, Ji-Uk;Lee, Dong-Hyuk;Oh, Chang-Suk;Lee, Duek-Jung;Jang, Joongsoon
    • Journal of Applied Reliability
    • /
    • v.16 no.2
    • /
    • pp.98-103
    • /
    • 2016
  • Purpose: The purpose of this paper is to get a meaningful information for improving manufacturing quality of the products before they are produced in client's manufacturing process. Methods: A variety of data mining techniques have been being used for wide range of industries from process data in manufacturing factories for quality improvement. One application of those is to get meaningful information from process data in manufacturing factories for quality improvement. In this paper, the failure rate at client's manufacturing process is predicted by using the parameters of the characteristics of the product based on PCA (Principle Component Analysis) and regression analysis. Results: Through a case study, we proposed the predicting methodology and regression model. The proposed model is verified through comparing the failure rates of actual data and the estimated value. Conclusion: This study can provide the guidance for predicting the failure rate on the manufacturing process. And the manufacturers can prevent the defects by confirming the factor which affects the failure rate.

Development of Intelligent Data Validation Scheme for Sensor Network (센서 네트워크를 위한 지능형 데이터 유효화 기법의 개발)

  • Youk, Yui-Su;Kim, Sung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.481-486
    • /
    • 2007
  • Wireless Sensor Network(WSNs) consists of small sensor nodes with sensing, computation, and wireless communication capabilities. The large number of sensor nodes in a WSN means that there will often be some nodes which give erroneous sensor data owing to several reasons such as power shortage and transmission error. Generally, these sensor data are gathered by a sink node to monitor and diagnose the current environment. Therefore, this can make it difficult to get an effective monitoring and diagnosis. In this paper, to overcome the aforementioned problems, intelligent sensor data validation method based on PCA(Principle Component Analysis) is utilized. Furthermore, a practical implementation using embedded system is given to show the feasibility of the proposed scheme.

An Intrusion Detection System Using Principle Component Analysis and Support Vector Machines (주성분 분석과 서포트 벡터 머신을 이용한 침입 탐지 시스템)

  • 정성윤;강병두;김상균
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.314-317
    • /
    • 2003
  • 기존의 침입탐지 시스템에서는 오용탐지모델이 널리 사용되고 있다. 이 모델은 낮은 오판율(False Alarm rates)을 가지고 있으나, 새로운 공격에 대해 전문가시스템(Expert Systems)에 의한 규칙추가를 필요로 한다. 그리고 그 규칙과 완전히 일치되는 시그너처만 공격으로 탐지하므로 변형된 공격을 탐지하지 못한다는 문제점을 가지고 있다 본 논문에서는 이러한 문제점을 보완하기 위해 주성분분석(Principle Component Analysis; 이하 PCA)과 서포트 벡터 머신(Support Vector Machines; 이하 SVM)을 이용한 침입탐지 시스템을 제안한다. 네트워크 상의 패킷은 PCA를 이용하여 결정된 주성분 공간에서 해석되고, 정상적인 흐름과 비정상적인 흐름에 대한 패킷이미지패턴으로 정규화 된다. 이러한 두 가지 클래스에 대한 SVM 분류기를 구현한다. 개발하는 침입탐지 시스템은 알려진 다양한 침입유형뿐만 아니라, 새로운 변종에 대해서도 분류기의 유연한 반응을 통하여 효과적으로 탐지할 수 있다.

  • PDF

A Human Activity Recognition System Using ICA and HMM

  • Uddin, Zia;Lee, J.J.;Kim, T.S.
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.499-503
    • /
    • 2008
  • In this paper, a novel human activity recognition method is proposed which utilizes independent components of activity shape information from image sequences and Hidden Markov Model (HMM) for recognition. Activities are represented by feature vectors from Independent Component Analysis (ICA) on video images, and based on these features; recognition is achieved by trained HMMs of activities. Our recognition performance has been compared to the conventional method where Principle Component Analysis (PCA) is typically used to derive activity shape features. Our results show that superior recognition is achieved with our proposed method especially for activities (e.g., skipping) that cannot be easily recognized by the conventional method.

  • PDF

Object Recognition Using the Edge Orientation Histogram and Improved Multi-Layer Neural Network

  • Kang, Myung-A
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.142-150
    • /
    • 2018
  • This paper describes the algorithm that lowers the dimension, maintains the object recognition and significantly reduces the eigenspace configuration time by combining the edge orientation histogram and principle component analysis. By using the detected object region as a recognition input image, in this paper the object recognition method combined with principle component analysis and the multi-layer network which is one of the intelligent classification was suggested and its performance was evaluated. As a pre-processing algorithm of input object image, this method computes the eigenspace through principle component analysis and expresses the training images with it as a fundamental vector. Each image takes the set of weights for the fundamental vector as a feature vector and it reduces the dimension of image at the same time, and then the object recognition is performed by inputting the multi-layer neural network.

Imbedded Type Real-Time Fault Diagnosis for BLDC Motors (임베디드 타입의 실시간 BLDC 전동기 고장진단 시스템 구현)

  • Park, Jin-Il;Kim, Yong-Min;Lee, Dae-Jong;Cho, Jae-Hoon;Chun, Myung-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.4
    • /
    • pp.62-71
    • /
    • 2009
  • In this paper, we propose a fault diagnosis algorithm for BLDC motors by principle component analysis (PCA) and implement a real-time fault diagnosis system for BLDC motors. To verify the proposed diagnosis algorithm, various faulty data are acquired by Lab VIEW program from experimental system. We extract a fault feature using principle component analysis after preprocessing and then finally the fault diagnosis is performed by Euclidean similarity. Also, we embed the PCA algorithm and k-NN classification algorithm into a digital signal processor. From various experiments, we found that the proposed algorithm can be used as a powerful technique to classify the several fault signals acquired from BLDC motors.

A Study on the Classification of Islands by PCA ( I ) (PCA에 의한 도서분류에 관한 연구( I ))

  • 이강우
    • The Journal of Fisheries Business Administration
    • /
    • v.14 no.2
    • /
    • pp.1-14
    • /
    • 1983
  • This paper considers a classification of the 88 islands located at Kyong-nam area in Korea, using by examples of 12 components of the islands. By means of principal component analysis 2 principle components were extracted, which explained a total of 73.7% of the variance. Using an eigen variable criterion (λ>1), no further principle components were discussed. Principal component 1 and 2 explained 63.4% and 10.3% of the total variance respectively, The representation of the unrelated factor scores along the first and second principal axes produced a new information with respect to the classification of the islands. Based upon the representation, 88 islands were classified into 6 groups i. e. A, B, C, D, E, and F according to similarity of the components among them in this paper. The "Group F" belongs to a miscellaneous assortment that does not fit into the logical category. category.

  • PDF

Photomosaics Using Principal Component Analysis (주성분 분석을 사용한 포토모자이크)

  • Chun, Young-Jae;Oh, Kyoung-Su;Cho, Sung-Hyun
    • Journal of Korea Game Society
    • /
    • v.11 no.1
    • /
    • pp.139-146
    • /
    • 2011
  • We propose a photomosaic method using PCA(Principal Component Analysis), which uses PCA results to find the most similar candidate fast and correctly. When two images are projected onto a certain principal component, if their coefficients are similar, they are also likely to be similar. Thus our photomosaic method using PCA can take care of both colors and shapes of images. Our method using coefficient comparison is faster than the one using all color comparison and more correct than the one using average comparison. Our hardware accelerated photomosaic algorithm can handle video images in real-time.

Robust Facial Expression Recognition using PCA Representation (PCA 표상을 이용한 강인한 얼굴 표정 인식)

  • Shin Young-Suk
    • Korean Journal of Cognitive Science
    • /
    • v.16 no.4
    • /
    • pp.323-331
    • /
    • 2005
  • This paper proposes an improved system for recognizing facial expressions in various internal states that is illumination-invariant and without detectable rue such as a neutral expression. As a preprocessing to extract the facial expression information, a whitening step was applied. The whitening step indicates that the mean of the images is set to zero and the variances are equalized as unit variances, which reduces murk of the variability due to lightening. After the whitening step, we used the facial expression information based on principal component analysis(PCA) representation excluded the first 1 principle component. Therefore, it is possible to extract the features in the lariat expression images without detectable cue of neutral expression from the experimental results, we ran also implement the various and natural facial expression recognition because we perform the facial expression recognition based on dimension model of internal states on the images selected randomly in the various facial expression images corresponding to 83 internal emotional states.

  • PDF