• 제목/요약/키워드: PBT impeller (Pitched Blade Turbine)

검색결과 10건 처리시간 0.023초

PIV에 의한 교반기내의 산업용 임펠러형태에 따를 비정상 유동특성에 관한연구 (A Study on Unsteady Flow Characteristics in Industrial Mixers with Various Types Impeller by PIV)

  • 남구만;김범석;김정환;강문후;이영호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.678-683
    • /
    • 2003
  • Mixers are used in various industrial fields where it is necessary to intimately mix two reactants in a short period of time. However, despite their widespread use, complex unsteady flow characteristics of industrial mixers are not systematic investigated. The present study aimed to clarify unsteady flow characteristics induced by various impellers in a tank. Impellers are pitched blade turbine and neo-hydrofoil turbine types. A high speed CCD camera and an Ar-Ion laser for illumination were adopted to clarify the time-dependent flow characteristics of the mixers. The rotating speed of impellers increased from 6Hz to 60Hz by 6Hz. The maximum velocity around PBT impeller is higher than the hydrofoil type impeller. These two types of turbine shows that typical flow characteristics of axial turbine and suitable for mixing high -viscosity materials.

  • PDF

임펠러 형상에 따른 교반기의 유동특성에 관한 연구 (A Study on the Flow Characteristics of Mixer by Impeller Types)

  • 양창조;최민선;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권7호
    • /
    • pp.899-905
    • /
    • 2003
  • Mixers are used in several industrial applications where it is necessary to strongly mix reactants in a short period of time (eg. reaction injection molding, ceramics manufacturing, crystallization). However, despite their widespread use, mixing flow characteristics in these systems have not been rigorously investigated. Influence of blade shapes on the mixing time and the power consumption per unit volume in two kinds of impeller including the mixing effects are studied by PIV experiment. A series of the experiments were carried out to achieve a better mixing effect in simple baffle arrangement and tall vessel with modified impellers(two kinds of blades : pitched blade turbine and rushton turbine). Results show that periodic vortex from the mixing layer is predominant and related unsteady flow characteristics prevail over the entire region.

혼합탱크 내의 임펠라 형태에 따른 유동 특성에 관한 수칙해석 (Numerical Study on Flow Patterns of Impeller's Type in a Stirred Tank)

  • 오석영;송길섭
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.454-459
    • /
    • 2001
  • The present study is concerned with the flow patterns induced by other impellers in a rectangular tank Impellers are FBT(Flat blade turbine), PBT(Pitched blade turbine), Shroud turbine, Rushton Turbine, and Helical ribbon turbine. The solution of flows in moving reference frames requires the use of 'moving' cell zone. The moving zone approaches are MRF(Multiple reference frame), which is a steady-state approximation and Sliding method, which is a unsteady-state approximation. Numerical results using two moving zone approaches are compared with experiments by Ranade & Joshi, which have done extensive LDA measurements of the flow generated by a standard six-bladed Rushton turbine in a cylindrical baffled vessel. In this paper we simulated the flow patterns with above mentioned moving zone approaches and impellers. Turbulence model is RNG k-$\epsilon$ model.

  • PDF

전산유체역학을 이용한 산업용교반기의 Impeller형상에 따른 유동특성 (Flow Characteristics about Industrial Agitators Impeller Shape by CFD)

  • 김동균;배석태;이철재;박재현;김오근
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.321-322
    • /
    • 2006
  • Industrial agitators are used in various industrial fields where they are necessary to intimately mix two reactants in a short period of time. However, despite their widespread use, complex unsteady flow characteristics of industrial agitators are not systematically investigated. The present study alms for clarify unsteady flow characteristics induced by various impellers in a tank. Impellers are pitched blade turbine(PBT) types, Screw type and Rushton turbine type. In this study flow characteristics of the impeller using CFD. The rotating speed of impellers fixed about 100RPM. These three types of Impeller show that typical flow characteristics of axial turbine and suitable for mixing powder

  • PDF

CFD와 역설계를 이용한 교반기 Impeller 형상 해석에 관한 연구 (Study on the Industrial Agitator's Impeller Shape Analysis Using CFD and Reverse Engineering)

  • 김동균;배석태;박재현
    • 한국CDE학회논문집
    • /
    • 제11권5호
    • /
    • pp.359-364
    • /
    • 2006
  • Industrial Agitators are used in various industrial fields where they are necessary to intimately mix two reactants in a short period of time. However, despite their widespread use, complex unsteady flow characteristics of industrial mixers are not systematically investigated. The present study aims for clarify unsteady flow characteristics induced by various impellers in agitator's tank. Impellers are Pitched blade turbine(PBT) types, Screw type and Rushton turbine type(RUT). In this study is numerical analysis of the Industrial agitator's Impeller types. The rotating speed of impellers fixed about 100RPM. Numerical analysis results show that differential flow characteristics of each type Impeller and Rushton turbine type(RUT) is suitable for mixing powder.

혼합탱크 내의 임펠라 형태에 따른 유동 특성에 관한 수치해석 (Numerical Study on Flow Patterns in a Stirred Tank with Impeller Types)

  • 송길섭;오석영;오정진
    • 한국유체기계학회 논문집
    • /
    • 제5권2호
    • /
    • pp.29-35
    • /
    • 2002
  • The present study is concerned with the flow patterns induced by various impellers in a rectangular tank. Impellers are FBT (Flat blade turbine), PBT (Pitched blade turbine), Shroud turbine, Rushton turbine, and Helical ribbon turbine types. The solutions of flows in moving reference frames require the use of 'moving' cell zone. The moving zone approaches are based on MRF (Multiple reference frame), which is a steady-state approximation and sliding method, which is an unsteady-state approximation. Numerical results using two moving zone approaches we compared with experiments by Ranade & Joshi, which have done extensive LDA measurements of the flow generated by a standard six-bladed Rushton turbine in a cylindrical baffled vessel. In this paper, we simulated the flow patterns with above-mentioned moving zone approaches and impellers. Turbulence model used is RNG $k-{\epsilon}$ model. Sliding-mesh method is more effective than MRF for simulating the rectangular tank with inlet and outlet. RNG $k-{\epsilon}$ model strongly underestimates the velocity of experimental data and velocity by Chen & Kim's model, but it seems to be correctly predicted in overall distribution.

PIV와 CFD에 의한 산업용 교반기 Impeller 형상 선정에 관한 연구 (A Study about Choice of Industrial Mixer's Impeller Type for PIV and CFD)

  • 김동균;김정환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.797-803
    • /
    • 2007
  • The Industrial Mixers are used in various industrial fields where they are necessary to intimately mix two reactants in a short Period of time. However. despite their widespread use, complex unsteady flow characteristics of industrial mixers are not systematically investigated. The present study aims for clarify unsteady flow characteristics Induced by various impellers in a tank. Impellers are pitched blade turbine(PBT) types, Screw type and Rushton turbine type. In this study choice of the industrial mixer's impeller type using PIV and CFD method. The rotating speed of impellers are fixed by 100RPM.

농도계측기법과 PIV에 의한 산업용 교반기 Impeller 형상 선정에 관한 연구 (A Study about Choice of Industrial Mixer's Impeller Type for Concentration Measurement Method and PIV)

  • 김동균;배석태;김정환;김오근;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권3호
    • /
    • pp.413-419
    • /
    • 2006
  • The Industrial Mixers are used in various industrial fields where they are necessary to intimately mix two reactants in a short period of time. However, despite their widespread use, complex unsteady flow characteristics of industrial mixers are not systematically investigated. The present study aims for clarify unsteady flow characteristics induced by various impellers in a tank. Impellers are pitched blade turbine(PBT) types. Screw type and Rushton turbine type. In this study choice of the Industrial Mixer's Impeller type for distribution of concentration and PIV measurement method. The rotating speed of impellers are fixed by 100RPM.

응집효율 향상을 위한 수직형 교반기의 유동특성 연구 (A Study on the Flow Characteristics of Vertical Impeller to Improve Flocculation Efficiency)

  • 김진훈;박종호
    • 한국유체기계학회 논문집
    • /
    • 제8권3호
    • /
    • pp.33-41
    • /
    • 2005
  • The optimum condition is defined as one that best suits the purpose of flocculation; the number of small particles should decrease, while that of large particles should increase. The object of this research was to develop a new impeller and substitute for conventional flocculators. The flow characteristics of turbines and hydrofoil type flocculators in turbulent fluids were observed using a standard $k-{\epsilon}$ Model and a computational fluid dynamics (CFD) simulation program-FLUENT. The experiments were performed to compare PBT(Pitched Blade Turbine) flocculator with twisted hydrofoil type flocculators for velocity distribution, and floe formation at conventional water treatment plants in Korea. As a result of the CED solution, twisted hydrofoil types are similar to hydrofoil flocculators for flow characteristics without regard to the twisted angle, On the other hand, it was established that turbine flocculators are greater than hydrofoil flocculators with flow unevenness and dead zone formation. Twisted hydrofoil type-II (Angle $15{\sim}20^{\circ}$) is the most proper impeller for water flocculation from this point of view with a decreasing the dead zone, maintaining of the equivalent energy distribution and a drawing up of the sedimentation substance from the bottom of the flocculation basin.

응집효율 향상을 위한 수직형 교반기의 유동특성 연구 (A Study on the Flow Characteristics of Vertical Impeller to Improve Flocculation Efficiency)

  • 김진훈;박종호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.267-274
    • /
    • 2004
  • The optimum condition is defined as one that best suits the purpose of flocculation; the number of small particles should decrease, while that of large particles should increase. The object of this research was to develop a new impeller and substitute for conventional flocculators. The flow characteristics of turbines and hydrofoil type flocculators in turbulent fluids were observed using a standard k-$\epsilon$ Model and a computational fluid dynamics (CFD) simulation program- FLUENT The experiments were performed to compare PBT(Pitched Blade Turbine) flocculator with twisted hydrofoil type flocculators for velocity distribution, and floc formation at conventional water treatment plants in Korea. As a result of the CFD solution, twisted hydrofoil types are similar to hydrofoil flocculators for flow characteristics without regard to the twisted angle, On the other hand, it was established that turbine flocculators are greater than hydrofoil flocculators with flow unevenness and dead zone formation. Twisted hydrofoil type- II (Angle $15{\~}20^{\circ}$) is the most proper impeller for water flocculation from this point of view with a decreasing the dead zone, maintaining of the equivalent energy distribution and a drawing up of the sedimentation substance from the bottom of the flocculation basin.

  • PDF