• Title/Summary/Keyword: PBMS (particle beam mass spectrometer)

Search Result 24, Processing Time 0.031 seconds

PBMS (Particle Beam Mass Spectrometer)를 이용한 크기 분류시 발생하는 입자 확산현상 분석에 관한 연구

  • Mun, Ji-Hun;Sin, Yong-Hyeon;Gang, Sang-U;Kim, Tae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.232-232
    • /
    • 2012
  • 반도체 공정에서 일반적으로 오염입자를 측정하는 방법은 테스트 웨이퍼를 ex-situ 방식인 surface scanner를 이용하여 분석하는 particle per wafer pass (PWP) 방식이 주를 이루고 있다. 이러한 오염입자는 반도체 수율에 결정적인 역할을 하는 것으로 알려져 있으며 반도체 선폭이 작아지면서 제어해야하는 오염입자의 크기도 작아지고 있다. 하지만, 현재 사용하는 PWP 방식은 실시간 분석이 불가능하기 때문에 즉각적인 대처가 불가능 하고 이는 수율향상에 도움이 되지 못하는 후처리 방식이다. 따라서 저압에서 오염입자를 실시간으로 측정할 수 있는 장비에 대한 요구가 늘어나고 있는 실정이다. 저압에서 나노입자를 측정할 수 있는 장비로 PBMS가 있다. PBMS는 electron gun을 이용하여 입자를 하전시킨 후 편향판을 이용하여 크기를 분류하고 Faraday cup으로 측정된 전류를 환산하여 입자의 농도를 측정하는 장비이다. 편향판에 의하여 Faraday cup으로 이동되는 입자들은 농도 차에 의한 확산현상이 발생한다. 본 연구에서는 Faraday cup 이동 시 발생하는 확산현상을 여러 크기의 Faraday cup과 polystyrene latex (PSL) 표준입자를 이용하여 분석하였다. Faraday cup을 고정 식이 아닌 이동 식으로 설계를 하여 축의 원점을 기준으로 이동시켜 가면서 입자 전류량을 측정하였으며, 이를 기준 (reference) Faraday cup의 측정량과 비교하여 효율을 계산하였다. PSL 표준 입자 100, 200 nm 크기에 대하여 cup의 크기를 바꿔 가면서 각각 평가 하였다. 그 결과 입자의 크기가 작을 수록 더 넓은 구간으로 확산되었고 크기가 작은 Faraday cup의 경우에 정밀한 결과를 얻을 수 있었다. 본 연구를 통하여 편향판을 지나면서 발생하는 입자의 확산현상에 대한 정량적 평가를 수행할 수 있었으며, 추후 PBMS 설계 시 Faraday cup 크기를 결정하고 Faraday cup array 기술을 적용하는데 유용하게 활용 될 수 있을 것으로 기대 된다.

  • PDF

BPSG 및 PSG CVD 공정 중 발생하는 오염입자 발생특성

  • Na, Jeong-Gil;Mun, Ji-Hun;Choe, Hu-Mi;Kim, Tae-Seong;Choe, Jae-Bung;Im, Seong-Gyu;Park, Sang-Hyeon;Lee, Heon-Jeong;Go, Yong-Gyun;Lee, Sang-Mi;Yun, Ju-Yeong;Gang, Sang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.261-261
    • /
    • 2010
  • 본 연구에서는 PBMS (Particle Beam Mass Spectrometer)와 ISPM (In-Situ Particle Monitor)을 연계하여 BPSG (Borophosphosilicate Glass) 및 PSG (Phosphosilicate Glass) 박막 증착을 위한 CVD (chemical vapor deposition) 공정 중 발생하는 오염입자 발생특성에 대해 비교 평가하였다. 소스는 TEB (Triethylborate), TEPO (Triethylphosphate) 및 TEOS (Tetraethoxysilane)를 사용하였고, 운반가스 및 반응가스로 He과 $O_2$$O_3$를 사용하였다. 증착온도와 압력은 각각 $450^{\circ}C$, 200 Torr 이었다. 반응기의 배기라인에 PBMS와 ISPM을 설치하고 500 nm 이하의 입자에 대해 공정단계별 시간에 따른 모니터링 결과 전 공정에 걸쳐 동일한 패턴의 입자발생분포를 보였으며, 특히 PBMS의 경우 ISPM의 입자측정한계인 260 nm 이하의 입자크기도 측정할 수 있었다. 입자발생이 안정적으로 일어나는 증착공정 중 PBMS를 통하여 입자크기를 측정한 결과 BPSG의 경우 약 110 nm, PSG의 경우 약 80 nm의 분포를 나타내었다. 이를 통해 TEB 소스가 배제된 PSG의 경우 BPSG의 경우보다 입자의 성장이 지체됨을 확인하였다. 측정에 대한 신뢰성을 확보하기 위해 PBMS 내의 TEM (Transmission Electron Microscopy) grid를 이용하여 입자를 샘플링 하였고, TEM 분석을 실시한 결과 PBMS 측정결과와 잘 일치하였다. 또한 EDS (Energy Dispersive Spectroscopy) 분석을 통하여 입자성분에 대해 검증하였다.

  • PDF

나노입자 복합특성 측정장치 연구

  • Mun, Ji-Hun;Park, Hyeon-Guk;Lee, Jun-Hui;Sin, Yong-Hyeon;Gang, Sang-U;Kim, Tae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.149-149
    • /
    • 2013
  • 반도체 공정 및 디스플레이 공정에서 발생하는 오염입자는 공정 불량을 일으키는 가장 큰 인 중의 하나이며, 수십 나노에서 수 백 나노의 크기를 갖는다. 최근 반도체 산업이 발전함에 따라 회로의 선폭이 점차 감소하고 있으며 오염입자의 임계 직경(critical diameter) 또한 작아지고 있다. 또한 디스플레이 산업에서는 패널이 대형화되고 공정이 발달함에 따라 입자에 의한 패널 오염이 이슈가 되고 있는 실정이다. 현재 반도체 및 디스플레이 산업에서 사용되는 측정방법으로는 레이저를 이용하여 공정 후 표면에 남아있는 오염입자를 측정하는 ex-situ 방법이 주를 이루고 있다. Ex-situ 방법을 이용한 오염입자의 제어는 웨이퍼 전체를 측정할 수 없을 뿐만 아니라 실시간 측정이 불가능하기 때문에 공정 모니터링 장비로 사용이 어려우며 오염입자와 공정 간의 상관관계 파악에도 많은 제약이 따르게 된다. 이에 따라 저압에서 in-situ 방법을 이용한 실시간 오염입자 측정 기술 개발이 요구되고 있다. 또한 입자의 크기 뿐 아니라 성분과 형상까지 측정할 수 있는 장치의 개발 요구가 높아지고 있는 실정이다. 이를 위해 입자의 크기 및 분포를 측정할 수 있는 Particle Beam Mass Spectrometer (PBMS)와 형상을 측정할 수 있는 Scanning Electron Microscope (SEM)의 기능을 통합하여 실시간으로 나노입자의 복합특성(크기, 성분, 형상)을 측정할 수 있는 장치를 개발하였다. 또한 기존 장치들의 문제점 중 하나가 실시간으로 교정이 불가능하다는 것이었는데 이 장치의 경우 실시간으로 측정되는 결과의 조합으로 실시간 교정까지도 가능한 장점을 가지고 있다.

  • PDF

입자 집속 용도의 직경 가변형 렌즈에 대한 특성 연구

  • Kim, Myeong-Jun;Kim, Dong-Bin;Kim, Hyeong-U;Gang, Sang-U;Kim, Tae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.241-241
    • /
    • 2016
  • 반도체 선폭이 20 nm급까지 감소함에 따라 기존에 수율에 문제를 끼치던 공정 외부 유입 입자뿐만 아니라, 공정 도중에 발생하는 수~수십 나노의 작은 입자도 수율에 악영향을 끼치게 되었다. 이에 따라 저압, 극청정 조건에서 진행되는 공정 중 발생하는 입자를 실시간으로 모니터링 할 수 있는 장비에 대한 수요가 발생하고 있다. Particle beam mass spectrometer (PBMS)는 이러한 요구사항을 만족할 수 있는 장비로 100 mtorr의 공정 조건에서 5 nm 이상의 입자의 직경별 수농도를 측정할 수 있는 장비이다. PBMS로 입자의 수농도를 측정하기 위해서는 PBMS 전단에서 입자를 중앙으로 집속할 필요가 있다. 공기역학렌즈는 PBMS 전단에서 입자를 집속시키기 위해 일반적으로 널리 사용되고 있는 장비로 여러 개의 오리피스로 이루어져 있다. 공기역학렌즈를 지나는 수송 유체와 입자는 이러한 연속 오리피스를 거치면서 팽창과 수축을 반복하며, 관성력의 차이로 인해 입자가 중앙으로 집속된다. 그러나 기존 공기역학렌즈는 고정된 직경의 오리피스를 사용하기 때문에 설계된 공정조건 이외에는 입자의 집속효율이 감소한다는 단점을 지닌다. 따라서 공정조건이 바뀔 경우 공기역학렌즈를 교체해야 되며, 진공이라는 환경하에서 이러한 교체는 많은 시간과 노력을 요구로 한다. 본 연구에서는 이러한 공기역학렌즈의 문제점을 해결하기 위해 다양한 공정조건에서 교체 없이 사용할 수 있는 새로운 형태의 직경 가변형 공기역학렌즈인 조리개형 공기역학렌즈를 제안하였다. 기존 연구를 통해 조리개형 공기 역학 렌즈가 다양한 압력 범위 내에서 나노입자를 성공적으로 집속할 수 있음을 보였지만, 장비를 상용화하기 위해서는 사용자가 좀 더 쉽게 렌즈직경을 결정 할 수 있어야 한다. 이에 본 연구에서는 조리개형 렌즈의 중공 직경에 따른 입자 집속 특성을 평가하였으며, 최종적으로 압력과 집속하고자 하는 직경에 따라 렌즈 중공 직경을 결정할 수 있게 해주는 데이터 베이스를 제작하였다.

  • PDF

PBMS용 조리개형 공기 역학 렌즈의 수치해석적 연구

  • Kim, Myeong-Jun;Kim, Yeong-Seok;Kim, Dong-Bin;Mun, Ji-Hun;Gang, Sang-U;Kim, Tae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.279.2-279.2
    • /
    • 2014
  • 반도체 선폭이 20 nm급까지 감소함에 따라 기존에 수율에 문제를 끼치던 공정 외부 유입 입자뿐만 아니라, 공정 도중에 발생하는 수~수십 나노의 작은 입자도 수율에 악영향을 끼치게 되었다. 이에 따라 저압, 극청정 조건에서 진행되는 공정 중 발생하는 입자를 실시간으로 모니터링 할 수 있는 장비에 대한 수요가 발생하고 있다. Particle beam mass spectrometer (PBMS)는 이러한 요구사항을 만족할 수 있는 장비로 100 mtorr의 공정 조건에서 5 nm 이상의 입자의 직경별 수농도를 측정할 수 있는 장비이다. PBMS로 입자의 수농도를 측정하기 위해서는 PBMS 전단에서 입자를 중앙으로 집속할 필요가 있다. 공기역학렌즈는 PBMS 전단에서 입자를 집속시키기 위해 일반적으로 널리 사용되고 있는 장비로 여러 개의 오리피스로 이루어져 있다. 공기역학렌즈를 지나는 수송 유체와 입자는 이러한 연속 오리피스를 거치면서 팽창과 수축을 반복하며, 관성력의 차이로 인해 입자가 중앙으로 집속된다. 그러나 기존 공기역학렌즈는 고정된 직경의 오리피스를 사용하기 때문에 설계된 공정조건 이외에는 입자의 집속효율이 감소한다는 단점을 지닌다. 따라서 공정조건이 바뀔 경우 공기역학렌즈를 교체해야 되며, 진공이라는 환경하에서 이러한 교체는 많은 시간과 노력을 요구로 한다. 본 연구에서는 이러한 공기역학렌즈의 문제점을 해결하기 위해 다양한 공정조건에서 교체 없이 사용할 수 있는 새로운 형태의 공기역학렌즈인 조기래형 공기역학렌즈를 제안하였다. 각각의 오리피스가 중공의 직경을 변경할 수 있는 구조인 조리개의 형태로 설계되어 있어, 공정조건에 따라 중공의 직경을 변경함으로써 입자의 집속을 결정하는 요소인 Stokes number를 조절 할 수 있다. 이러한 조리개형 공기 역학 렌즈의 성능을 평가하기 위해 수치해석적인 방법을 이용하였다. 공기 역학 렌즈 전단의 압력을 0.1~10 torr까지 변화시켜가며 다양한 공정조건에서 오리피스의 직경만을 변경하여 입자 집속 가능 여부를 판단하였으며, 조리개 형태의 구조상 발생할 수 있는 leak로 인한 입자 집속 효율의 변화도 평가하였다.

  • PDF

반응가스로 $H_2$$H_2O$를 사용한 $Co(hfac)_2$ 전구체의 플라즈마에 대한 영향 분석

  • Seo, Gyeong-Cheon;Sin, Jae-Su;Na, Jeong-Gil;Choe, Jae-Bung;Kim, Tae-Seong;Yun, Ju-Yeong;Kim, Jin-Tae;Sin, Yong-Hyeon;Gang, Sang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.239-239
    • /
    • 2010
  • Cobalt (Co) 박막은 낮은 저항과 우수한 열적 안정성에 의해 금속 배선공정에서 copper의 확산 및 산화를 방지하기 위해 사용된다. Co 박막을 증착하기 위해서는 유기화학 증착법이 많이 사용되고, 이를 위해 많은 Co 전구체들이 연구되어지고 있다. 본 연구에서는 $Co(hfac)_2$ 전구체의 플라즈마 및 반응가스에 따른 기상상태의 변화와 증착공정에서 발생되는 입자의 크기와의 상관관계를 연구하였다. 실험의 변수로 반응가스 ($H_2$, $H_2O$)와 플라즈마 파워 (0~50W)를 사용하였다. 또한 Co 전구체의 기상분해 및 반응을 분석을 위해 fourier transform infrared (FT-IR) spectroscopy를 사용하였다. 그리고 기상상태의 변화가 입자 형성에 끼치는 영향을 관찰하기 위해 저압에서 실시간으로 나노입자를 측정할 수 있는 장비인 particle beam mass spectrometer (PBMS)를 활용하였다.

  • PDF

가스 펄스를 이용한 플라즈마 공정 중 생성되는 실리콘 나노입자의 변수에 따른 발생 특성 연구

  • Choe, Hu-Mi;Kim, Dong-Bin;An, Chi-Seong;Kim, Tae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.391-391
    • /
    • 2011
  • 최근 나노에 대한 연구가 활성화되고 나노입자가 가지는 특성이 부각되면서 이를 소자 제조에 응용하고자 하는 연구가 집중적으로 이루어지고 있다. 박막에 포함된 나노입자는 메모리, 고효율 박막형 태양전지 등에 이용될 수 있는 가능성을 보여주었으며, 나노입자를 바탕으로 소자 제조에 관한 연구가 이루어지면서 플라즈마 내 발생하는 나노입자를 이용하여 패터닝 등에 적용하고자 하는 연구가 국내외에서 활발히 이루어지고 있다. 특히 플라즈마에서 발생하는 나노입자는 플라즈마 내 전기적 및 화학적 특징으로 인해 다른 입자 제조 공정과 달리 응집이 없는 균일한 입자를 제조할 수 있다. 이러한 플라즈마 내 발생 입자를 응용하기 위해서는 공정 조건에 따른 입자의 생성 및 성장 분석이 필요하다. 하지만 이러한 입자 발생 특성에 관한 연구는 기존에 밝혀진 반응 메커니즘으로 인해 수치해석적 연구는 체계적으로 진행되었으나 실험적 연구의 경우 적합한 측정 장비의 부재로 인해 제한이 있었다. 따라서 본 연구에서는 저압에서 실시간으로 나노입자 분포를 측정할 수 있는 PBMS (particle beam mass spectrometer)를 이용하여 나노입자 합성 공정 중 발생하는 입자의 존재를 확인하고 특성을 분석하였다. 실리콘 나노 입자의 측정은 PBMS 장비의 전단 부분을 PECVD (plasma enhanced chemical vapor deposition) 장치 내부에 연결하여 진행하였다. PECVD를 이용한 실리콘 나노입자 형성의 주요 변수는 RF pulse, 가스(Ar, SiH4, H2)의 유량, Plasma power, 공정압력 등이 있다. 본 연구에서는 실리콘 나노입자를 만드는데 필요한 여러 변수들을 제어함으로써 이에 따른 입경분포를 측정하였다. 또한 동일한 조건에서 생성 나노입자를 포집하여 TEM과 SEM을 이용하여 분석하여 그 결과를 비교하였다. 추후 지속적 연구에 의해 변수에 따른 나노입자 생성을 데이터베이스화 하여 요구되는 응용분야에 적합한 특성을 가지는 나노입자를 형성하는 조건을 정립 하는데 중요한 역할을 할 것을 기대할 수 있다.

  • PDF

실리콘 박막 증착을 위한 열필라멘트 화학 기상 증착 공정 중 발생하는 나노입자 특성에 관한 연구

  • Choe, Hu-Mi;Hong, Ju-Seop;Kim, Dong-Bin;Yu, Seung-Wan;Kim, Chan-Su;Hwang, Nong-Mun;Kim, Tae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.304-304
    • /
    • 2011
  • 열필라멘트 화학 기상 증착 공정(HWCVD, hot wire chemical deposition)은 낮은 기판 온도에서 다결정 실리콘 박막을 빠른 속도로 증착할 수 있는 방법이다. 이는 후처리가 없어도 전기적 특성이 우수한 박막을 저온에서 얻을 수 있기 때문에 녹는점이 낮은 기판에 증착을 할 수 있으며 공정비용 절감 효과가 있다. 이러한 박막 증착 공정 중 기상 핵생성에 의해 나노 입자가 생성되며, 새로운 관점에서는 그 농도와 크기가 박막 성장에 중요한 변수로 작용한다. 따라서 공정조건의 변화에 따라 생성되는 나노 입자의 크기 분포를 실시간으로 분석하여 박막 형성의 최적 조건을 찾는 연구가 필요하다. 하지만 이러한 입자 발생 특성에 관한 연구는 기존에 밝혀진 반응 메커니즘으로 인해 수치해석적 연구는 체계적으로 진행되었으나 실험적 연구의 경우 적합한 측정장비의 부재로 인해 제한이 있었다. 따라서 본 연구에서는 저압에서 실시간으로 나노입자 분포를 측정할 수 있는 PBMS (particle beam mass spectrometer)를 이용하여 열필라멘트 화학 기상 증착 공정 중 발생하는 입자의 존재를 확인하고 특성을 분석하였다. 실리콘 나노 입자의 측정은 PBMS 장비의 전단 부분을 HWCVD 배기 라인에 연결하여 진행하였으며 반응기 내 샘플링 위치, 필라멘트 온도, 챔버 압력, 작동기체의 비율을 변수로 하여 진행하였다. 그 결과 실리콘 나노 입자는 양 또는 음의 극성을 가진 하전된 상태임을 확인 하였고, 측정 조건에 따라 일부 단일 극성으로 존재하였다. 한편, 필라멘트 온도가 증가할수록 하전된 나노입자의 최빈값은 감소하였다. 또한 반응 가스인 SiH4 농도가 증가할수록 최빈값은 농도에 비례하여 증가하였다. 이런 결과는 기존 HWCVD 실험에서 투과 전자 현미경(TEM)을 이용하여 분석한 실리콘 나노 입자의 크기 분포 결과와 경향이 일치함을 확인하였다. 본 연구를 통하여 확인된 하전된 나노 입자의 존재를 실험적으로 확인하였으며 추후 지속적 연구에 의해 이러한 하전된 나노 입자가 박막 형성에 기여 하는 것을 규명하고 박막 형성 조건을 최적화하는데 중요한 역할을 할 것을 기대할 수 있다.

  • PDF

PCDS: 반도체 및 디스플레이 공정 시 실시간 입자 분석 및 모니터링 방법

  • Kim, Deuk-Hyeon;Kim, Yong-Ju;Gang, Sang-U;Kim, Tae-Seong;Lee, Jun-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.70.2-70.2
    • /
    • 2015
  • 현재 반도체 및 디스플레이이 공정 분야는 1 um 이상의 입자에서부터 10 nm이하 크기의 오염입자를 제어해야 한다. 현재 오염원인을 파악하기 위해서 사용하는 방법은 공정 완료 후 대상물(웨이퍼 및 글래스)을 CD-SEM (Critical Dimension Scanning Electron Microscope)와 같은 첨단 분석장비를 사용하여 사후 (Ex-situ) 진행하고 있다. 이러한 방법은 오염원이 이미 공정 대상물을 오염시키고 난 후 그 원인을 분석하는 방법으로 그 원인을 찾기가 어려울 뿐만 아니라, 최근 공정관리가 공정 진행 중(In-situ) 행해져야 하는 추세로 봤을 때 합당한 방법이라 할 수 없다. 이를 해결하기 위해 진공공정 중 레이저를 이용하여 측정하고자 하는 여러 시도들이 있었지만, 여전히 긍정적인 답변을 보여주지 못하고 있다. 본 발표에서 소개하는 PCDS (Particle Characteristic Diagonosis System)은 PBMS (Particle Beam Mass Spectrometer)와 SEM (Scanning Electron Microscope), 그리고 EDS (Energy Dispersive X-ray Spectroscopy)를 통합하여 만든 시스템으로 진공공정 중 (In-situ) 챔버 내부에서 발생하고 있는 입자의 크기 분포, 입자의 형상, 그리고 입자의 성분을 실시간으로 분석할 수 있는 방법을 제공한다. 이러한 방법 (PCDS)에 대한 개념과 원리, 그리고 현재까지 개발된 단계에서 얻어진 결과에 대해 소개할 것이다.

  • PDF

하이브리드 SEM 시스템

  • Kim, Yong-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.109-110
    • /
    • 2014
  • 주사전자현미경(Scanning Electron Microscopy: SEM)은 고체상태에서 미세조직과 형상을 관찰하는 데에 가장 다양하게 쓰이는 분석기기로서 최근에 판매되고 있는 고분해능 SEM은 수 나노미터의 분해능을 가지고 있다. 그리고 SEM의 초점심도가 크기 때문에 3차원적인 영상의 관찰이 용이해서 곡면 혹은 울퉁불퉁한 표면의 영상을 육안으로 관찰하는 것처럼 보여준다. 활용도도 매우 다양해서 금속파면, 광물과 화석, 반도체 소자와 회로망의 품질검사, 고분자 및 유기물, 생체시료 nnnnnnnnn와 유가공 제품 등 모든 산업영역에 걸쳐 있다(Fig. 1). 입사된 전자빔이 시료의 원자와 탄성, 비탄성 충돌을 할 때 2차 전자(secondary electron)외에 후방산란전자(back scattered electron), X선, 음극형광 등이 발생하게 되는 이것을 통하여 topography (시료의 표면 형상), morphology(시료의 구성입자의 형상), composition(시료의 구성원소), crystallography (시료의 원자배열상태)등의 정보를 얻을 수 있다. SEM은 2차 전자를 이용하여 시료의 표면형상을 측정하고 그 외에는 SEM을 플랫폼으로 하여 EDS (Energy Dispersive X-ray Spectroscopy), WDS (Wave Dispersive X-ray Spectroscope), EPMA (Electron Probe X-ray Micro Analyzer), FIB (Focus Ion Beam), EBIC (Electron Beam Induced Current), EBSD (Electron Backscatter Diffraction), PBMS (Particle Beam Mass Spectrometer) 등의 많은 분석장치들이 SEM에 부가적으로 장착되어 다양한 시료의 측정이 이루어진다. 이 중 결정구조, 조성분석을 쉽고 효과적으로 할 수 있게 하는 X선 분석장치인 EDS를 SEM에 일체화시킨 장비와 EDS 및 PBMS를 SEM에 장착하여 반도체 공정 중 발생하는 나노입자의 형상, 성분, 크기분포를 측정하는 PCDS(Particle Characteristic Diagnosis System)에 대해 소개하고자 한다. - EDS와 통합된 SEM 시스템 기본적으로 SEM과 EDS는 상호보완적인 기능을 통하여 매우 밀접하게 사용되고 있으나 제조사와 기술적 근간의 차이로 인해 전혀 다른 방식으로 운영되고 있다. 일반적으로 SEM과 EDS는 별개의 시스템으로 스캔회로와 이미지 프로세싱 회로가 개별적으로 구현되어 있지만 로렌츠힘에 의해 발생하는 전자빔의 왜곡을 보정을 위해 EDS 시스템은 SEM 시스템과 연동되어 운영될 수 밖에 없다. 따라서, 각각의 시스템에서는 필요하지만 전체 시스템에서 보면 중복된 기능을 가지는 전자회로들이 존재하게 되고 이로 인해 SEM과 EDS에서 보는 시료의 이미지의 차이로 인한 측정오차가 발생한다(Fig. 2). EDS와 통합된 SEM 시스템은 중복된 기능인 스캔을 담당하는 scanning generation circuit과 이미지 프로세싱을 담당하는 FPGA circuit 및 응용프로그램을 SEM의 회로와 프로그램을 사용하게 함으로 SEM과 EDS가 보는 시료의 이미지가 정확히 일치함으로 이미지 캘리브레이션이 필요없고 측정오차가 제거된 EDS 측정이 가능하다. - PCDS 공정 중 발생하는 입자는 반도체 생산 수율에 가장 큰 영향을 끼치는 원인으로 파악되고 있으며, 생산수율을 저하시키는 원인 중 70% 가량이 이와 관련된 것으로 알려져 있다. 현재 반도체 공정 중이나 반도체 공정 장비에서 발생하는 입자는 제어가 되고 있지 않은 실정이며 대부분의 반도체 공정은 저압환경에서 이루어지기에 이 때 발생하는 입자를 제어하기 위해서는 저압환경에서 측정할 수 있는 측정시스템이 필요하다. 최근 국내에서는 CVD (Chemical Vapor Deposition) 시스템 내 파이프내벽에서의 오염입자 침착은 심각한 문제점으로 인식되고 있다(Fig. 3). PCDS (Particle Characteristic Diagnosis System)는 오염입자의 형상을 측정할 수 있는 SEM, 오염입자의 성분을 측정할 수 있는 EDS, 저압환경에서 기체에 포함된 입자를 빔 형태로 집속, 가속, 포화상태에 이르게 대전시켜 오염입자의 크기분포를 측정할 수 있는 PBMS가 일체화 되어 반도체 공정 중 발생하는 나노입자 대해 실시간으로 대처와 조치가 가능하게 한다.

  • PDF