• Title/Summary/Keyword: PBL height

Search Result 28, Processing Time 0.027 seconds

Structural performance of GFRP-concrete composite beams

  • Yang, Yong;Xue, Yicong;Zhang, Tao;Tian, Jing
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.485-495
    • /
    • 2018
  • This paper presents the results of an experimental study on the structural performance of an innovative GFRP-concrete composite beam construction, which is reinforced with longitudinal GFRP pultruded box-profile and transverse steel stirrups. GFRP perfobond (PBL) shear connectors are employed to enhance the bonding performance between the GFRP profile and the concrete portion. To investigate the shear and flexural performance of this composite system, eight specimens were designed and tested under three-point and four-point bending. The main variables were the height of the composite beam and the shear span-to-depth ratio. The test results indicated that bonding cracks did not occur at the interface between the GFRP profile and the concrete until the final stage of the test. This shows that the specimens performed well as composite beams during the test and that the GFRP PBL connectors were reliable. Based on the test results, two calculation methods were used to determine the flexural and shear capacity of the composite beams. A comparative study of the test and theoretical results suggests that the proposed methods can reasonably predict both the flexural and shear capacities of the specimens, whereas the provisions of ACI 440 are relatively conservative on both counts.

Investigation on mechanical performance of flat steel plate-lightweight aggregate concrete hollow composite slab

  • Yang, Yong;Chen, Yang;Yang, Ye;Zeng, Susheng
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.329-340
    • /
    • 2019
  • An innovated type of the flat steel plate-lightweight aggregate concrete hollow composite slab was presented in this paper. This kind of the slab is composed of flat steel plate and the lightweight aggregate concrete slab, which were interfaced with a set of perfobond shear connectors (PBL shear connectors) with circular hollow structural sections (CHSS) and the shear stud connectors. Five specimens were tested under static monotonic loading. In the test, the influence of shear span/height ratios and arrangements of CHSS on bending capacity and flexural rigidity of the composite slabs were investigated. Based on the test results, the crack patterns, failure modes, the bending moment-curvature curves as well as the strains of the flat steel plate and the concrete were focused and analyzed. The test results showed that the flat steel plate was fully connected to the lightweight aggregate concrete slab and no obvious slippage was observed between the steel plate and the concrete, and the composite slabs performed well in terms of bending capacity, flexural rigidity and ductility. It was further shown that all of the specimens failed in bending failure mode regardless of the shear span/height ratios and the arrangement of CHSS. Moreover, the plane-section assumption was proved to be valid, and the calculated formulas for predicting the bending capacity and the flexural rigidity of the composite slabs were proposed on the basis of the experimental results.

Atmospheric Numerical Simulation for an Assessment of Wind Resource and an Establishment of Wind Map on Land (풍력자원 평가 및 육상바람지도 작성을 위한 고해상도 대기유동장 수치모의)

  • Jung, Woo-Sik;Lee, Hwa-Woon;Kim, Hyun-Goo;Choi, Hyun-Jung;Lee, Soon-Hwan;Kim, Dong-Hyuk;Kim, Min-Jung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.529-531
    • /
    • 2009
  • To construct the wind map for mainland Korea, the well designed atmospheric numerical modeling system was used. Three nest domains were construced with spatial resolutions between $10{\times}10km$ up to the hightest resolution of $1{\times}1km$. Parameterization schemes like MRF(PBL), RRTM(radiation), Grell(cumulus) were chosen since wind data simulated is in better agreement with the observed wind data. High-resolution atmospheric numerical model was applied to simulate the motion of the atmosphere and to produce the wind map around the South Korea. The results of several simulations were improved compare to the past system, because of using the fine geographical data, such as terrain height and land-use data, and the meteorological data assimilation.

  • PDF

A Study on the Variations of Stability and Heat Budget in the Planetary Boundary Layer at Kimhae (김해지방의 지표경계층내의 열수지 및 안정도 변화에 관한 연구)

  • 박종길;이화운;김유근;이순환
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.2
    • /
    • pp.103-113
    • /
    • 1997
  • The research described in this paper was conducted to estimate the stability and heat budget in planetary boundary layer (PBL) at Kimhae. The upper air observation was carried out during period from 3 Februsry 1993 to 5 February 1993 at Kimhae. The surface observation data used the one during period from 1 April 1994 to 31 March 1995. The maximum height of inversion layer observed at Kimhae was 310 m. Destruction of the inversion was simultaneously occurred at the surface and the mid-layer (200 $\sim$ 300 m), however the origin of destruction is different each other. The surface inversion is destructed by surface heating owing to growing radiation in surface but disappearance of the mid-layer inversion is related to the upper cold air movement.

  • PDF

Verification of Planetary Boundary Layer Height for Local Data Assimilation and Prediction System (LDAPS) Using the Winter Season Intensive Observation Data during ICE-POP 2018 (ICE-POP 2018기간 동계집중관측자료를 활용한 국지수치모델(LDAPS)의 행성경계층고도 검증)

  • In, So-Ra;Nam, Hyoung-Gu;Lee, Jin-Hwa;Park, Chang-Geun;Shim, Jae-Kwan;Kim, Baek-Jo
    • Atmosphere
    • /
    • v.28 no.4
    • /
    • pp.369-382
    • /
    • 2018
  • Planetary boundary layer height (PBLH), produced by the Local Data Assimilation and Prediction System (LDAPS), was verified using RawinSonde (RS) data obtained from observation at Daegwallyeong (DGW) and Sokcho (SCW) during the International Collaborative Experiments for Pyeongchang 2018 Olympic and Paralympic winter games (ICE-POP 2018). The PBLH was calculated using RS data by applying the bulk Richardson number and the parcel method. This calculated PBLH was then compared to the values produced by LDAPS. The PBLH simulations for DGW and SCW were generally underestimation. However, the PBLH was an overestimation from surface to 200 m and 450 m at DGW and SCW, respectively; this result of model's failure to correctly simulate the Surface Boundary Layer (SBL) and the Mixing Layer (ML) as the PBLH. When the accuracy of the PBLH simulation is low, large errors are seen in the mid- and low-level humidity. The highest frequencies of Planetary boundary layer (PBL) types, calculated by the LDAPS at DGW and SCW, were presented as types Ι and II, respectively. Analysis of meteorological factors according to the PBL types indicate that the PBLH of the existing stratocumulus were overestimated when the mid- and low-level humidity errors were large. If the instabilities of the surface and vertical mixing into clouds are considered important factors affecting the estimation of PBLH into model, then mid- and low-level humidity should also be considered important factors influencing PBLH simulation performance.

Impacts of Local Meteorology caused by Tidal Change in the West Sea on Ozone Distributions in the Seoul Metropolitan Area (서해 조석현상에 따른 국지기상 변화가 수도권 오존농도에 미치는 영향)

  • Kim, Sung Min;Kim, Yoo-Keun;An, Hye Yeon;Kang, Yoon-Hee;Jeong, Ju-Hee
    • Journal of Environmental Science International
    • /
    • v.28 no.3
    • /
    • pp.341-356
    • /
    • 2019
  • In this study, the impacts of local meteorology caused by tidal changes in the West Sea on ozone distributions in the Seoul Metropolitan Area (SMA) were analyzed using a meteorological model (WRF) and an air quality (CMAQ) model. This study was carried out during the day (1200-1800 LST) between August 3 and 9, 2016. The total area of tidal flats along with the tidal changes was calculated to be approximately $912km^2$, based on data provided by the Environmental Geographic Information Service (EGIS) and the Ministry of Oceans and Fisheries (MOF). Modeling was carried out based on three experiments, and the land cover of the tidal flats for each experiment was designed using the coastal wetlands, water bodies (i.e., high tide), and the barren or sparsely vegetated areas (i.e., low tide). The land cover parameters of the coastal wetlands used in this study were improved in the herbaceous wetland of the WRF using updated albedo, roughness length, and soil heat capacity. The results showed that the land cover variation during high tide caused a decrease in temperature (maximum $4.5^{\circ}C$) and planetary boundary layer (PBL) height (maximum 1200 m), and an increase in humidity (maximum 25%) and wind speed (maximum $1.5ms^{-1}$). These meteorological changes increased the ozone concentration (about 5.0 ppb) in the coastal areas including the tidal flats. The increase in the ozone concentration during high tide may be caused by a weak diffusion to the upper layer due to a decrease in the PBL height. The changes in the meteorological variables and ozone concentration during low tide were lesser than those occurring during high tide. This study suggests that the meteorological variations caused by tidal changes have a meaningful effect on the ozone concentration in the SMA.

Characteristics of the surface ozone concentration on the occurrence of air mass thunderstorm (기단성 뇌우 발생시 지표오존농도의 변화 특성)

  • 전병일
    • Journal of Environmental Science International
    • /
    • v.12 no.4
    • /
    • pp.419-426
    • /
    • 2003
  • This study was performed to research ozone concentration related to airmass thunderstorm using 12 years meteorological data(1990~2001) at Busan. The occurrence frequency of thunderstorm during 12 years was 156 days(annual mean 13days). The airmass thunderstorm frequency was 14 days, most of those occurrence at summertime(59%). In case August 4, 1996, increase of ozone concentration was simultaneous with the decrease of temperature and increase of relative humidity, In case July 23, 1997, ozone concentration of western site at Busan increased, while its of eastern site decreased as airmass thunderstorm occurred(about 1500LST). It is supposed that these ozone increases are the effect of ozone rich air that is brought down by cumulus downdrafts from height levels where the ozone mixing ratio is larger. Thunderstorms can cause downward transport of ozone from the reservoir layer in the upper troposphere into planeta교 boundary layer(PBL). This complex interaction of source and sink processes can result in large variability fer vertical and horizontal ozone distributions. Thus a variety of meteorological precesses can act to enhance vertical mixing between the earth's surface and the atmospheric in the manner described fer thunderstorm.

Analysis of Climate Variability under Various Scenarios for Future Urban Growth in Seoul Metropolitan Area (SMA), Korea (미래 도시성장 시나리오에 따른 수도권 기후변화 예측 변동성 분석)

  • Kim, Hyun-Su;Jeong, Ju-Hee;Kim, Yoo-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.3
    • /
    • pp.261-272
    • /
    • 2012
  • In this study, climate variability was predicted by the Weather Research and Forecasting (WRF) model under two different scenarios (current trends scenario; SC1 and managed scenario; SC2) for future urban growth over the Seoul metropolitan area (SMA). We used the urban growth model, SLEUTH (Slope, Land-use, Excluded, Urban, Transportation, Hill-Shade) to predict the future urban growth in SMA. As a result, the difference of urban ratio between two scenarios was the maximum up to 2.2% during 50 years (2000~2050). Also, the results of SLEUTH like this were adjusted in the Weather Research and Forecasting (WRF) model to analysis the difference of the future climate for the future urbanization effect. By scenarios of urban growth, we knew that the significant differences of surface temperature with a maximum of about 4 K and PBL height with a maximum of about 200 m appeared locally in newly urbanized area. However, wind speeds are not sensitive for the future urban growth in SMA. These results show that we need to consider the future land-use changes or future urban extension in the study for the prediction of future climate changes.

A study on high ozone concentration in Shiwha.Banwol industry complex using photochemical air pollution model- Analysis of meteorological characteristics - (시화.반월단지지역의 고농도 오존일에 대한 광화학모델 적용 연구 - 기상특성에 대한 분석 -)

  • An, Jae-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.5
    • /
    • pp.47-59
    • /
    • 2011
  • The purpose of this paper is to simulate the high ozone concentration in Shiwha Banwol indusrial complex. High pollution episodes (ozone alert) of this area are the results of geographical location and its air pollutants emission. This research has used meteorological model (RAMS) and photochemical air pollution Model (CIT model). As first step of the evaluate of this combined model system simulations are done in terms of meteorological characteristics like wind fields, PBL-height, etc.. Numerical simulations are carried out with real meteorological synoptic data on June. 24-25, 2010. In comparison with real measurement and another research the model reflects well local meteorological phenomena and shows the possibility to be utilized to analyse the pollutant dispersion over irregular terrain region. The high ozone concentration is deeply correlated to the ambient air temperature, wind speed and solar radiation. Local meteorological phenomena like sea-land breeze impact on horizontal dispersion of ozone. This analysis of meteorological characteristics can, in turn, help to predict their influences on air quality and to manage the high ozone episodes.

The Effect of Atmospheric Flow Field According to the Urban Roughness Parameter and the Future Development Plan on Urban Area (도심 실제 거칠기 적용과 장래 도심 개발계획에 따른 국지 기상장 변화 수치 모의)

  • Choi, Hyun-Jung;Lee, Hwa-Woon;Kim, Min-Jung
    • Journal of Environmental Science International
    • /
    • v.19 no.6
    • /
    • pp.703-714
    • /
    • 2010
  • In this study, we analyzed the impact of orographic and thermal forcing on the atmospheric flow field over the urban metropolitan areas on urban artificial buildings and future development plan. Several numerical experiments have been undertaken in order to clarify the impacts of the future development plan on urban area by analyzing practical urban ground conditions, we revealed that there were large differences in the meteorological differences in each case. The prognostic meteorological fields over complex areas of Seoul, Korea are generated by the PSU/NCAR mesoscale model(MM5). we carried out a comparative examination on the meteorological fields of topography and land-use that had building information and future development plan. A higher wind speed at daytimes tends to be forecasted when using new topography and land use data that have a high resolution with an appropriate limitation to the mixing height and the nocturnal boundary layer(NCB). During nighttime periods, since radiation cooling development is stronger after development plan, the decreased wind speed is often generated.