• Title/Summary/Keyword: PBAT

Search Result 29, Processing Time 0.025 seconds

Effect of Surface Modifying Agents Towards Enhancing Performance of Waste Gypsum Based PBAT Composite

  • Kong, Tae Woong;Kim, In Tae;Sinha, Tridib Kumar;Moon, Junho;Kim, Dong Ho;Kim, Inseon;Na, Kwangyong;Kim, Min-Woo;Kim, Hye-Lin;Hyeong, Taegyeong;Oh, Jeong Seok
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.347-353
    • /
    • 2020
  • Stearic acid (SA), polyethylene glycol (PEG), and malic acid (MA) have been used to modify the surface of waste gypsum to develop corresponding poly (butylene adipate-co-terephthalate) (PBAT) composites. According to the mechanical properties, MA-treated gypsum (MA-gypsum) showed the best performance, whereas SA-gypsum showed the worst performance. In contrast to SA and PEG (having -COOH and -OH as polar functional groups, respectively), the presence of both -OH and -COOH in MA is responsible for the superior surface treatment of gypsum and its better dispersion in the polymer matrix (as revealed by FE-SEM analyses). The presence of long aliphatic chain in SA is supposed to inhibit the dispersion of SA-gypsum. Further, the performance of MA-gypsum/PBAT was enhanced by adding polylactic acid (PLA). The maximum optimized contents of MA-gypsum and PLA are 20 and 7.5 wt% for developing a high-performance PBAT composite.

Preparation and Characterization of PBAT/OTPS Blend Films with Epoxidized Soybean Oil (ESO) for Eco-friendly Packaging Application

  • Jina Song;Sangwoo Kwon;Su-il Park
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.1
    • /
    • pp.9-14
    • /
    • 2023
  • The application of starch-based films is limited by the poor water vapor barrier and mechanical properties. In this study, plasticized octenyl-succinated corn starch (OTPS) was mixed into Poly (butylene adipate-co-terephthalate) (PBAT) with various concentration (0/0.25/0.5/0.75 wt%) of epoxidized soybean oil (ESO) to enhance the mechanical properties and the hydrophobicity of blends. Tensile Strength and elongation at break of PBAT/OTPS film was slightly strengthened as the added ratio of ESO raised to 0.5 wt%, yet lessened again in 0.75 wt% sample. The yield strength and elastic modulus were highest in 0.25wt% of ESO added. In thermal properties, the melting temperature (Tm) and crystallization temperature (Tc) were highest at ESO 0.25 and the maximum degradation temperature (Tmax) of components of the films were developed as ESO added. Also, it has been proved that the addition of hydrophobic substances reduces the hydrophilicity of the film by contact angle. This suggests the use of epoxidized oil for preparing films based on high TPS content allows obtaining enhanced interfacial adhesion. This study confirmed that ESO acts as a compatibilizer between OTPS and PBAT to improve the mechanical properties and hydrophobicity of the sample. The sample containing 0.5wt% of ESO was the most suitable for packaging application.

Study on Characteristics of PLA/PBAT Composite Film with Various Chain Extenders (고분자 사슬연장제를 이용한 폴리유산 / 폴리부틸렌 아디페이트테레프탈레이트 복합필름의 제조 및 특성 분석)

  • Kim, Sun-jong;Cho, Hyun-seung;Lee, Jae-hwan;You, Myung-je;Um, Yoo-Jun;Park, Su-il
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.23 no.2
    • /
    • pp.61-66
    • /
    • 2017
  • Poly lactic acid(PLA) and poly butylene adipate-co-terephthalate(PBAT) film was prepared using a twin extruder. PLA (25%) and PBAT (75%) were mixed with various ratio of chain extenders, such as $Joncryl^{(R)}$ and hexamethylene diisocyanate(HDI) to improve the mechanical and thermal properties of produced bio composite films. Tensile strengths of films were steadily increased with increasing ratio of chain extender. The tensile strength of control films was about 25 MPa, and the tensile strength of films with combined chain extenders was above 40 MPa. The films with $Joncryl^{(R)}$ resulted in improved tensile strength, while the film with HDI alone showed improved percent elongation at break. By adding chain extenders into PLA/PBAT resin, the cold crystallization temperature (Tcc) and decomposition temperature (Td) of the produced bio composite films increased. It revealed that the addition of two types of chain extenders was efficient way to get PLA/PBAT film with improved strength and elongation.

Fabrication of Antibacterial Biodegradable films Using a Radiation-induced Reduction Method

  • Jung, Chan-Hee;Cho, Yong-Jun;Jung, Jin-Mook;Hwang, In-Tae
    • Journal of Radiation Industry
    • /
    • v.7 no.2_3
    • /
    • pp.141-147
    • /
    • 2013
  • The simple and facile radiation technique of the preparation of antibacterial biodegradable polymer films containing silver nanoparticles (Ag NPs) was described. The biodegradable poly(butylene adipate-co-terephthalate) (PBAT) films containing silver trifluoroacetate (Ag TFA) were prepared by a solvent casting method, and then the films were irradiated by electron beams at the various doses ranging from 20 to 200 kGy to form Ag NPs in the biodegradable polymers. The results of UV-vis and FE-SEM/EDX analyses revealed that the Ag NPs were successfully formed in the PBAT matrix during the electron beam irradiation, and their amounts were dependant on the absorbed dose and Ag TFA concentrations. Furthermore, on the basis of the results of the antibacterial test through disk diffusion and colony counting test, the irradiated PBAT/Ag TFA films exhibited the antibacterial property due to the formation of Ag NPs.

PBAT Compound Films with Improved Hydrolysis Resistance and its Application (내가수분해성이 향상 된 PBAT의 컴파운드 필름 및 이의 응용)

  • Sim, Jae-Ho;Shim, Jae-Hoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.553-559
    • /
    • 2022
  • The film mulching technology is useful for controlling soil temperature and moisture by covering the soil surface, and for suppressing weeds. In this study, in order to improve the hydrolysis resistance and mechanical properties of the biodegradable mulching film, PBAT(Poly butylene adipate-co-terephthalate) and PLA(Poly lactic acid) were modified using a twin-screw extruder and then the physical and biodegradable properties of the film were investigated. After landfill the mulching film in soil, the weight reduction of the film was confirmed by period, and plant growth was observed after mulching in the dry paddy field for rice farming. Mulching films with improved hydrolysis resistance showed excellent crop growth properties, and biodegradable mulching films can offer potential as a new alternative for environmentally friendly, efficient and sustainable agricultural practices.

Study on Properties of Eco-friendly Pot with Biodegradable PLA/PBAT Blend Film (생분해성 PLA-PBAT 블렌드 필름을 이용한 친환경 포트의 특성 연구)

  • Park, Han-saem;Song, Kang-yeop;Kang, Jae-ryeon;Seo, Wonjun;Lee, SeonJu;Lee, Won-Ki
    • Journal of Environmental Science International
    • /
    • v.24 no.8
    • /
    • pp.1037-1043
    • /
    • 2015
  • Since single-use disposable plastic usage has steadily been increasing, recent trends in polymeric research point to increasing demand for eco-friend materials which reduce plastic waste. A huge amount of non-degradable polypropylene (PP)-based pots for seedling culture are discarded for transplantation. The purpose of this study is to investigate an eco-friendly biodegradable material as a possible substitute for PP pot. The blend of poly(lactic acid) (PLA) with poly(butylene adipate-co-terephthalate) (PBAT) was used because of its good mechanical and flexible properties as well as biodegradation. After landfill, various properties of the blend pot were investigated by UTM, SEM, NMR and TGA. The results showed the tensile strength of the blend film rapidly decreased after 5 weeks of landfill due to degradation. From NMR data after landfill, the composition of PLA in the blend was decreased. These results indicate that the biodegradation of the blend preferentially occurs in PLA component. To investigate the effect of holes in pot bottom and side on root growth, a plant in the pot was grown. Some roots came out through holes as landfill period increases. These results indicate that the eco-friendly pot can be directly planted without the removal of pot.

Antibacterial Properties of Poly-butylene Adipate Terephthalate With Zinc Pyrithione Composites (Zinc pyrithione을 함유한 poly-butylene adipate terephthalate 복합체의 항균 특성)

  • Tae-gyeun Kim;Woo-Suk Jung;Daesuk Bang;Kwang-Hwan Jhee
    • Journal of Life Science
    • /
    • v.34 no.8
    • /
    • pp.540-547
    • /
    • 2024
  • The continuous use of polymer materials has exacerbated waste and environmental challenges, spurring a growing interest in eco-friendly polymers, especially biodegradable polymers. These polymers are gaining attention for their potential as antimicrobial agents, particularly in fields like food packaging a need further underscored by the recent COVID-19 pandemic. This study focuses on the development of an antibacterial polymer by combining poly-butylene adipate terephthalate (PBAT) with zinc pyrithione (ZnPt). The antibacterial properties were assessed through turbidity analysis, the shaking flask method, and the film adhesion method. The antibacterial activities of the composites with varying ZnPt% (w/w) contents (0, 0.1, 0.3, and 0.5) were evaluated against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Results revealed that even at a low concentration of 0.1% (w/w), the composites demonstrated significant antibacterial activity against both Gram-positive bacteria (S. aureus) and Gram-negative bacteria (E. coli). Composites with ZnPt concentrations of 0.3% (w/w) or higher achieved over 99.999% antibacterial efficacy. Field emission scanning electron microscopy (FE-SEM) analysis of the fracture surfaces of the composites confirmed the uniform distribution of ZnPt particles, ranging from 1-4 ㎛. Further FE-SEM analysis of bacterial suspensions exposed to the composite surfaces showed clear evidence of cell wall destruction in both E. coli and S. aureus. As an antimicrobial biodegradable polymer, PBAT-ZnPt composites show great promise for applications in various sectors, including food packaging.

Study on Phase Separation of Carbon Dioxide-reducible Polymer Blends (이산화탄소 저감형 고분자 블렌드의 상 분리 특성연구)

  • Cho, Yong-Kwang;Kim, Yeong-Woo;Lee, Hak Yong;Park, Sang-Bo;Park, Chan-Young;Lee, Won-Ki
    • Journal of Environmental Science International
    • /
    • v.24 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • Sustainable and eco-friendly polymers, natural polymers, bio-based polymers, and degradable polyesters, are of growing interest because of environmental concerns associated with waste plastics and emissions of carbon dioxide from preparation of petroleum-based polymers. Degradable polymers, poly(butylene adipate-co-terephthalate) (PBAT), poly(propylene carbonate) (PPC), and poly(L-lactic acid) (PLLA), are related to reduction of carbon dioxide in processing. To improve a weak mechanical property of a degradable polymer, a blending method is widely used. This study was forced on the component separation of degradable polymer blends for effective recycling. The melt-mixed blend films in a specific solvent were separated by two layers. Each layer was analysed by FT-IR, DSC, and contact angle measurements. The results showed that each component in the PPC/PLLA and PPC/PBAT blends was successfully separated by a solvent.

포장과 법률 - 「기구 및 용기·포장의 기준 및 규격」 일부개정고시(안)②

  • (사)한국포장협회
    • The monthly packaging world
    • /
    • s.358
    • /
    • pp.108-117
    • /
    • 2023
  • 식품의약품안전처는 지난해 10월 14일 「기구 및 용기·포장의 기준 및 규격」을 일부 개정했다. 개정이유로는 기구 및 용기·포장의 원재료로 사용할 재생원료의 인정 절차 등이 마련될 예정임에 따라 인정을 신청하는 경우 제출하여야 하는 자료를 구체적으로 정하고, 환경부에서 「식품용기 사용 재생원료 기준」을 고시함에 따라 이에 맞추어 재생원료 기준을 개선하는 한편, 지속가능한 사회실현을 위한 산업현장의 요구를 반영하여 폴리부틸렌아디페이트테레프탈레이트(PBAT) 수지를 등재하고, 시험법에 대한 신뢰도 제고 등을 위하여 시험용액 등의 조제방법 및 분석기기의 측정조건을 개선하는 등 현행 기준 및 규격의 일부 미비점을 개선하기 위함이다. 다음에 그 상세한 내용을 지난호에 이어서 살펴 보도록 한다.

  • PDF

포장과 법률 - 「기구 및 용기 ∙ 포장의 기준 및 규격」 일부개정고시(안)

  • 식품의약품안전처
    • The monthly packaging world
    • /
    • s.356
    • /
    • pp.94-101
    • /
    • 2022
  • 식품의약품안전처는 지난 10월 14일 「기구 및 용기·포장의 기준 및 규격」을 일부 개정했다. 개정이유로는 기구 및 용기·포장의 원재료로 사용할 재생원료의 인정 절차 등이 마련될 예정임에 따라 인정을 신청하는 경우 제출하여야 하는 자료를 구체적으로 정하고, 환경부에서 「식품용기 사용 재생원료 기준」을 고시함에 따라 이에 맞추어 재생원료 기준을 개선하는 한편, 지속가능한 사회실현을위한 산업현장의 요구를 반영하여 폴리부틸렌아디페이트테레프탈레이트(PBAT) 수지를 등재하고, 시험법에 대한 신뢰도 제고 등을 위하여 시험용액 등의 조제방법 및 분석기기의 측정조건을 개선하는 등 현행 기준 및 규격의 일부 미비점을 개선하기 위함이다.

  • PDF