• Title/Summary/Keyword: PATH algorithm

Search Result 2,928, Processing Time 0.026 seconds

Development of evolutionary algorithm for determining the k most vital arcs in shortest path problem

  • Chung, Hoyeon;Shin, Dongju
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.113-116
    • /
    • 2000
  • The purpose of this study is to present a method for determining the k most vital arcs in shortest path problem using an evolutionary algorithm. The problem of finding the k most vital arcs in shortest path problem is to find a set of k arcs whose simultaneous removal from the network causes the greatest increase in the total length of shortest path. The problem determining the k most vital arcs in shortest path problem has known as NP-hard. Therefore, in order to deal with the problem of real world the heuristic algorithm is needed. In this study we propose to the method of finding the k-MVA in shortest path problem using an evolutionary algorithm which known as the most efficient algorithm among heuristics. For this, the expression method of individuals compatible with the characteristics of shortest path problem, the parameter values of constitution gene, size of the initial population, crossover rate and mutation rate etc. are specified and then the effective genetic algorithm will be proposed. The method presented in this study is developed using the library of the evolutionary algorithm framework (EAF) and then the performance of algorithm is analyzed through the computer experiment.

  • PDF

A Study on Ship Path Planning Algorithm based on Real-time Ocean Environment (실해역 환경을 고려한 선박의 최적항해계획 알고리즘 연구)

  • Kim, Dongjun;Seol, Hyeonju;Kim, Jinju
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.252-260
    • /
    • 2016
  • Unlike terrestrial transportation, marine transportation should consider environment factors in order to optimize path planning. This is because, ship's path planning is greatly influenced by real-time ocean environment-sea currents, wave and wind. Therefore, in this study, we suggest a ship path planning algorithm based on real-time ocean environment using not only $A^*$ algorithm but also path smoothing method. Moreover, in order to improve objective function value, we also consider ship's moving distance based on ship's location and real-time ocean environment data on grid map. The efficiency of the suggested algorithm is proved by comparing with $A^*$ algorithm only. This algorithm can be used as a reasonable automatics control system algorithm for unmaned ship.

Multi-objective path planning for mobile robot in nuclear accident environment based on improved ant colony optimization with modified A*

  • De Zhang;Run Luo;Ye-bo Yin;Shu-liang Zou
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1838-1854
    • /
    • 2023
  • This paper presents a hybrid algorithm to solve the multi-objective path planning (MOPP) problem for mobile robots in a static nuclear accident environment. The proposed algorithm mimics a real nuclear accident site by modeling the environment with a two-layer cost grid map based on geometric modeling and Monte Carlo calculations. The proposed algorithm consists of two steps. The first step optimizes a path by the hybridization of improved ant colony optimization algorithm-modified A* (IACO-A*) that minimizes path length, cumulative radiation dose and energy consumption. The second module is the high radiation dose rate avoidance strategy integrated with the IACO-A* algorithm, which will work when the mobile robots sense the lethal radiation dose rate, avoiding radioactive sources with high dose levels. Simulations have been performed under environments of different complexity to evaluate the efficiency of the proposed algorithm, and the results show that IACO-A* has better path quality than ACO and IACO. In addition, a study comparing the proposed IACO-A* algorithm and recent path planning (PP) methods in three scenarios has been performed. The simulation results show that the proposed IACO-A* IACO-A* algorithm is obviously superior in terms of stability and minimization the total cost of MOPP.

Low-delay Node-disjoint Multi-path Routing using Complementary Trees for Industrial Wireless Sensor Networks

  • Liu, Luming;Ling, Zhihao;Zuo, Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.2052-2067
    • /
    • 2011
  • Complementary trees are two spanning trees rooted at the sink node satisfying that any source node's two paths to the sink node on the two trees are node-disjoint. Complementary trees routing strategy is a special node-disjoint multi-path routing approach. Several complementary trees routing algorithms have been proposed, in which path discovery methods based on depth first search (DFS) or Dijkstra's algorithm are used to find a path for augmentation in each round of path augmentation step. In this paper, a novel path discovery method based on multi-tree-growing (MTG) is presented for the first time to our knowledge. Based on this path discovery method, a complementary trees routing algorithm is developed with objectives of low average path length on both spanning trees and low complexity. Measures are employed in our complementary trees routing algorithm to add a path with nodes near to the sink node in each round of path augmentation step. The simulation results demonstrate that our complementary trees routing algorithm can achieve low average path length on both spanning trees with low running time, suitable for wireless sensor networks in industrial scenarios.

A Path Tracking Control Algorithm for Autonomous Vehicles (자율 주행차량의 경로추종 제어 알고리즘)

  • 안정우;박동진;권태종;한창수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.121-128
    • /
    • 2000
  • In this paper, the control algorithm fur an autonomous vehicle is studied and applied to an actual 2 wheel-driven vehicle system. In order to control a nonholonomic system, the kinematic model for an autonomous vehicle is constructed by relative velocity relationship about the virtual point at distance from the vehicle's frame. And the optimal controller that based on the kinematic model is operated on purpose to track a reference vehicle's path. The actual system is designed with named 'HYAVI' and the system controller is applied. Because all the results of simulation don't satisfy the driving conditions of HYAVI, a reformed control algorithm that satisfies an actual autonomous vehicle is applied at HYAVI. At the results of actual experiments, the path tracking works very well by the reformed control algorithm. An autonomous vehicle that applied this control algorithm can be easily used for a path generation algorithm.

  • PDF

A Novel Multi-Path Routing Algorithm Based on Clustering for Wireless Mesh Networks

  • Liu, Chun-Xiao;Zhang, Yan;Xu, E;Yang, Yu-Qiang;Zhao, Xu-Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1256-1275
    • /
    • 2014
  • As one of the new self-organizing and self-configuration broadband networks, wireless mesh networks are being increasingly attractive. In order to solve the load balancing problem in wireless mesh networks, this paper proposes a novel multi-path routing algorithm based on clustering (Cluster_MMesh) for wireless mesh networks. In the clustering stage, on the basis of the maximum connectivity clustering algorithm and k-hop clustering algorithm, according to the idea of maximum connectivity, a new concept of node connectivity degree is proposed in this paper, which can make the selection of cluster head more simple and reasonable. While clustering, the node which has less expected load in the candidate border gateway node set will be selected as the border gateway node. In the multi-path routing establishment stage, we use the intra-clustering multi-path routing algorithm and inter-clustering multi-path routing algorithm to establish multi-path routing from the source node to the destination node. At last, in the traffic allocation stage, we will use the virtual disjoint multi-path model (Vdmp) to allocate the network traffic. Simulation results show that the Cluster_MMesh routing algorithm can help increase the packet delivery rate, reduce the average end to end delay, and improve the network performance.

A Method for finding the k Most Vital Arcs in the Shortest Path Problem (최단경로문제에서 k개의 치명호를 찾는 방법)

  • 안재근;정호연;박순달
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.4
    • /
    • pp.11-20
    • /
    • 1998
  • This paper deals with a mathematical model and an algorithm for the problem of determining k most vital arcs in the shortest path problem. First, we propose a 0-1 integer programming model for finding k most vital arcs in shortest path problem given the ordered set of paths with cardinality q. Next, we also propose an algorithm for finding k most vital arcs ln the shortest path problem which uses the 0-1 Integer programming model and shortest path algorithm and maximum flow algorithms repeatedly Malik et al. proposed a non-polynomial algorithm to solve the problem, but their algorithm was contradicted by Bar-Noy et al. with a counter example to the algorithm in 1995. But using our algorithm. the exact solution can be found differently from the algorithm of Malik et al.

  • PDF

Shortest Path-Finding Algorithm using Multiple Dynamic-Range Queue(MDRQ) (다중 동적구간 대기행렬을 이용한 최단경로탐색 알고리즘)

  • Kim, Tae-Jin;Han, Min-Hong
    • The KIPS Transactions:PartA
    • /
    • v.8A no.2
    • /
    • pp.179-188
    • /
    • 2001
  • We analyze the property of candidate node set in the network graph, and propose an algorithm to decrease shortest path-finding computation time by using multiple dynamic-range queue(MDRQ) structure. This MDRQ structure is newly created for effective management of the candidate node set. The MDRQ algorithm is the shortest path-finding algorithm that varies range and size of queue to be used in managing candidate node set, in considering the properties that distribution of candidate node set is constant and size of candidate node set rapidly change. This algorithm belongs to label-correcting algorithm class. Nevertheless, because re-entering of candidate node can be decreased, the shortest path-finding computation time is noticeably decreased. Through the experiment, the MDRQ algorithm is same or superior to the other label-correcting algorithms in the graph which re-entering of candidate node didn’t frequently happened. Moreover the MDRQ algorithm is superior to the other label-correcting algorithms and is about 20 percent superior to the other label-setting algorithms in the graph which re-entering of candidate node frequently happened.

  • PDF

Path planning on satellite images for unmanned surface vehicles

  • Yang, Joe-Ming;Tseng, Chien-Ming;Tseng, P.S.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.87-99
    • /
    • 2015
  • In recent years, the development of autonomous surface vehicles has been a field of increasing research interest. There are two major areas in this field: control theory and path planning. This study focuses on path planning, and two objectives are discussed: path planning for Unmanned Surface Vehicles (USVs) and implementation of path planning in a real map. In this paper, satellite thermal images are converted into binary images which are used as the maps for the Finite Angle $A^*$ algorithm ($FAA^*$), an advanced $A^*$ algorithm that is used to determine safer and suboptimal paths for USVs. To plan a collision-free path, the algorithm proposed in this article considers the dimensions of surface vehicles. Furthermore, the turning ability of a surface vehicle is also considered, and a constraint condition is introduced to improve the quality of the path planning algorithm, which makes the traveled path smoother. This study also shows a path planning experiment performed on a real satellite thermal image, and the path planning results can be used by an USV.

Improved Path Planning Algorithm based on Informed RRT* using Gridmap Skeletonization (격자 지도의 골격화를 이용한 Informed RRT* 기반 경로 계획 기법의 개선)

  • Park, Younghoon;Ryu, Hyejeong
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.2
    • /
    • pp.142-149
    • /
    • 2018
  • $RRT^*$ (Rapidly exploring Random $Tree^*$) based algorithms are widely used for path planning. Informed $RRT^*$ uses $RRT^*$ for generating an initial path and optimizes the path by limiting sampling regions to the area around the initial path. $RRT^*$ algorithms have several limitations such as slow convergence speed, large memory requirements, and difficulties in finding paths when narrow aisles or doors exist. In this paper, we propose an algorithm to deal with these problems. The proposed algorithm applies the image skeletonization to the gridmap image for generating an initial path. Because this initial path is close to the optimal cost path even in the complex environments, the cost can converge to the optimum more quickly in the proposed algorithm than in the conventional Informed $RRT^*$. Also, we can reduce the number of nodes and memory requirement. The performance of the proposed algorithm is verified by comparison with the conventional Informed $RRT^*$ and Informed $RRT^*$ using initial path generated by $A^*$.