• Title/Summary/Keyword: PARKINSON

Search Result 857, Processing Time 0.021 seconds

Comparison of Clinical Characteristics and Polysomnographic Findings between REM Sleep Behavior Disorder with and without Associated Central Nervous System Disorders (중추신경계질환 동반 여부에 따른 렘수면 행동장애의 임상 특성과 수면다원기록소견 소견 비교)

  • Lee, Yu-Jin;Jeong, Do-Un
    • Sleep Medicine and Psychophysiology
    • /
    • v.12 no.1
    • /
    • pp.58-63
    • /
    • 2005
  • Objectives: REM sleep behavior disorder (RBD), characterized by excessive motor activity during REM sleep, is associated with loss of muscle atonia. In recent years, it has been reported that RBD has high co-morbidity with CNS disorders (especially, Parkinson's disease, dementia, multiple system atrophy, etc.). We aimed to assess differences in clinical and polysomnographic findings among RBD patients, depending on the presence or absence of central nervous system (CNS) disorders. Methods: The medical records and polysomnographic data of 81 patients who had been diagnosed as having RBD were reviewed. The patients were classified into two groups: associated RBD (aRBD, i.e., with a clinical history and/or brain MRI evidence of CNS disorder) and idiopathic RBD (iRBD, i.e., without a clinical history and/or brain MRI evidence of CNS disorder) groups. Twenty-one patients (25.9%) belonged to the aRBD group and 60 patients (74.1%) belonged to the iRBD group. The clinical characteristics and polysomnographic findings of the two groups were compared. Results: Periodic limb movement disorder (PLMD), i.e., PLMI (periodic limb movement index)>5, was observed more frequently in the aRBD group than in the iRBD group (p<0.001, Fisher's exact test). Also, obstructive sleep apnea syndrome (OSAS), i.e., RDI (respiratory disturbance index)>5, was found more frequently in the aRBD group (p=0.0042, Fisher's exact test). The percentages for slow wave sleep and sleep efficiency were significantly lower in the aRBD group than in the iRBD group. Conclusion: We found that 1 out of 4 RBD patients had associated CNS disorders, warranting more careful neurological evaluation and follow-up in this category of RBD. In this category of RBD patients, we also found more frequent PLMD and OSAS. These patients were also found to have lower slow wave sleep and sleep efficiency. In summary, RBD patients with associated CNS disorders suffer from more disturbed sleep than those without them.

  • PDF

Synthesis and Evaluation of $2-[^{18}F]Fluoro-A85380$, a Radioligand for ${\alpha}_4{\beta}_2$ Nicotinic Acetylcholine Receptor Imaging (${\alpha}_4{\beta}_2$ 니코틴성 아세틸콜린 수용체 영상 방사성리간드 $2-[^{18}F]fluoro-A85380$의 합성 및 평가)

  • Ryu, Eun-Kyoung;Choe, Yearn-Seong;Kim, Sang-Eun;Hwang, Sae-Hwan;Paik, Jin-Young;Choi, Yong;Lee, Kyung-Han;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.4
    • /
    • pp.261-270
    • /
    • 2002
  • Purpose: Nicotinic acetylcholine receptors (nAChRs), which mediate excitatory neurotransmission, are known to participate in various neurophysiological functions. Severe losses of nAChRs have been noted in Alzheimer's and Parkinson's diseases. Therefore, noninvasive and quantitative imaging of nAChRs would offer a better understanding on the function of these receptors. In this study, $2-[^{18}F]fluoro-A85380\;([^{18}F]1)$, an ${\alpha}_4{\beta}_2$ nAChRs radioligand, was prepared using one HPLC purification and evaluated in mouse brain, and the results were compared with those in the literature. Materials and Methods: $[^{18}F]1$ was prepared by $[^{18}F]$fluorination of the iodo precursor followed by acidic deprotection and then purified by HPLC. Tissue distribution studies were performed in mouse brain at the indicated time points and the result was expressed as %ID/g. Inhibition studies were also carried out with pretreatment of various ligands. Results: One HPLC purification method gave the desired product in 15-20% radiochemical yield and with high specific activity ($38-55GBq/{\mu}mol$). Tissue distribution studies showed that $[^{18}F]1$ specifically labeled nAChRs in mouse brain with a high thalamus to cerebellum uptake ratio (13.8 at 90 min). Inhibition studios demonstrated selective binding of $[^{18}F]1$ to nAChRs, blocking the uptake of the $[^{18}F]1$ in nAChR-rich legions by selective ligands such as cytisine and nicotine which are well-known nAChRs agonists. Conclusion: This study demonstrated that the $[^{18}F]1$ produced by the method using one HPLC purification gave the results similar to those reported in the literature. Therefore, this synthetic method can be readily applied to the routine preparation of $[^{18}F]1$, a PET radioligand for ${\alpha}_4{\beta}_2$ nAChRs imaging.

Does the Gut Microbiota Regulate a Cognitive Function? (장내미생물과 인지기능은 서로 연관되어 있는가?)

  • Choi, Jeonghyun;Jin, Yunho;Kim, Joo-Heon;Hong, Yonggeun
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.747-753
    • /
    • 2019
  • Cognitive decline is characterized by reduced long-/short-term memory and attention span, and increased depression and anxiety. Such decline is associated with various degenerative brain disorders, especially Alzheimer's disease (AD) and Parkinson's disease (PD). The increases in elderly populations suffering from cognitive decline create social problems and impose economic burdens, and also pose safety threats; all of these problems have been extensively researched over the past several decades. Possible causes of cognitive decline include metabolic and hormone imbalance, infection, medication abuse, and neuronal changes associated with aging. However, no treatment for cognitive decline is available. In neurodegenerative diseases, changes in the gut microbiota and gut metabolites can alter molecular expression and neurobehavioral symptoms. Changes in the gut microbiota affect memory loss in AD via the downregulation of NMDA receptor expression and increased glutamate levels. Furthermore, the use of probiotics resulted in neurological improvement in an AD model. PD and gut microbiota dysbiosis are linked directly. This interrelationship affected the development of constipation, a secondary symptom in PD. In a PD model, the administration of probiotics prevented neuron death by increasing butyrate levels. Dysfunction of the blood-brain barrier (BBB) has been identified in AD and PD. Increased BBB permeability is also associated with gut microbiota dysbiosis, which led to the destruction of microtubules via systemic inflammation. Notably, metabolites of the gut microbiota may trigger either the development or attenuation of neurodegenerative disease. Here, we discuss the correlation between cognitive decline and the gut microbiota.

Inhibitory Effect of Protaetia brevitarsis seulensis Ethanol Extract on Neuroinflammation in LPS-stimulated BV-2 Microglia (LPS에 의해 활성화된 미세아교세포에서 흰점박이꽃무지 에탄올 추출물의 신경염증 억제 효과)

  • Lee, Hwa Jeong;Seo, Minchul;Lee, Joon Ha;Kim, In-Woo;Kim, Sun Young;Hwang, Jae-Sam;Kim, Mi-Ae
    • Journal of Life Science
    • /
    • v.29 no.10
    • /
    • pp.1096-1103
    • /
    • 2019
  • Neuroinflammation is mediated by the activation of microglia and has been implicated in the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease. Therefore, the inhibition of neuroinflammation may be an effective solution to treat these brain disorders. Protaetia brevitarsis seulensis is an insect belonging to the order Coleoptera and inhabits Korea, China, Japan and Siberia. P. brevitarsis seulensis is an edible insect that can be consumed as a protein source for humans. It has been reported that P. brevitarsis seulensis contains useful bioactive substances for hepatoprotection and improving blood circulation, such as indole alkaloids. Microglia cells are the main source of proinflammatory cytokines and nitric oxide (NO) in the central nervous system, which Perform neuroimmune, inflammatory, and other neurobilogical functions. In this study, we investigated the anti-neuroinflammatory effects of P. brevitarsis seulensis ethanol extract (PBE) in activated microglia cells treated with lipopolysaccgarude (LPS, 100 ng/ml). As a result, PBE significantly inhibited NO production without cytotoxicity and decreased the expression levels of inducible NO synthase and cyclooxygenase-2. In addition, the production of inflammatory cytokine secreted by LPS was also reduced by PBE. These results suggest that PBE could be a good source of functional substances to prevent neuroinflammation and neurodegenerative diseases.

The Association Between Neurodegenerative Diseases and Development of Type 2 Diabetes (신경퇴행성 질환과 제2형 당뇨병 발생의 연관성)

  • Sang-Woo, Koo;Hojun, Lee;Yang-Tae, Kim;Hee-Cheol, Kim
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.30 no.2
    • /
    • pp.155-164
    • /
    • 2022
  • Objectives : A growing body of evidence links type 2 diabetes (T2D) with a neurodegenerative disease (ND) such as Alzheimer's disease and Parkinson's disease. The purpose of this study is to investigate the relationship between NDs and the development of T2D by comparing the incidence of T2D in a group of various NDs (ND group) and control group. Methods : A population-based 10-year follow-up study was conducted using the Korean National Health Information Database for 2002-2015. We used a retrospective cohort study design to investigate the association of ND with T2D occurrence. The study population included ND (n=8,814) and control (n=37,970) groups, all aged 60 years or over. The Kaplan-Meier method was used to estimate the risk of developing T2D as a function of time. Cox proportional hazards regression models were used to evaluate the relationship between ND and T2D. Results : T2D was developed in a significantly higher percentage of patients in the ND group (53.6%) than in the control group (44.7%). The ND group increased the risk of T2D (HR, 1.43; 95% CI, 1.38-1.47). About one-third of patients in both groups were additionally diagnosed with another ND before the occurrence of T2D during a 10-year follow-up period. When compared to those who did not have another ND during the follow-up period, the incidence of T2D in those who were additionally diagnosed with another ND was higher in both the ND and control groups. Conclusions : The ND group had about 1.4 times higher risk of developing T2D than the control group. Our results showed a positive association between ND and T2D.

Neurotechnologies and civil law issues (뇌신경과학 연구 및 기술에 대한 민사법적 대응)

  • SooJeong Kim
    • The Korean Society of Law and Medicine
    • /
    • v.24 no.2
    • /
    • pp.147-196
    • /
    • 2023
  • Advances in brain science have made it possible to stimulate the brain to treat brain disorder or to connect directly between the neuron activity and an external devices. Non-invasive neurotechnologies already exist, but invasive neurotechnologies can provide more precise stimulation or measure brainwaves more precisely. Nowadays deep brain stimulation (DBS) is recognized as an accepted treatment for Parkinson's disease and essential tremor. In addition DBS has shown a certain positive effect in patients with Alzheimer's disease and depression. Brain-computer interfaces (BCI) are in the clinical stage but help patients in vegetative state can communicate or support rehabilitation for nerve-damaged people. The issue is that the people who need these invasive neurotechnologies are those whose capacity to consent is impaired or who are unable to communicate due to disease or nerve damage, while DBS and BCI operations are highly invasive and require informed consent of patients. Especially in areas where neurotechnology is still in clinical trials, the risks are greater and the benefits are uncertain, so more explanation should be provided to let patients make an informed decision. If the patient is under guardianship, the guardian is able to substitute for the patient's consent, if necessary with the authorization of court. If the patient is not under guardianship and the patient's capacity to consent is impaired or he is unable to express the consent, korean healthcare institution tend to rely on the patient's near relative guardian(de facto guardian) to give consent. But the concept of a de facto guardian is not provided by our civil law system. In the long run, it would be more appropriate to provide that a patient's spouse or next of kin may be authorized to give consent for the patient, if he or she is neither under guardianship nor appointed enduring power of attorney. If the patient was not properly informed of the risks involved in the neurosurgery, he or she may be entitled to compensation of intangible damages. If there is a causal relation between the malpractice and the side effects, the patient may also be able to recover damages for those side effects. In addition, both BCI and DBS involve the implantation of electrodes or microchips in the brain, which are controlled by an external devices. Since implantable medical devices are subject to product liability laws, the patient may be able to sue the manufacturer for damages if the defect caused the adverse effects. Recently, Korea's medical device regulation mandated liability insurance system for implantable medical devices to strengthen consumer protection.

The Measurement of Sensitivity and Comparative Analysis of Simplified Quantitation Methods to Measure Dopamine Transporters Using [I-123]IPT Pharmacokinetic Computer Simulations ([I-123]IPT 약역학 컴퓨터시뮬레이션을 이용한 민감도 측정 및 간편화된 운반체 정량분석 방법들의 비교분석 연구)

  • Son, Hye-Kyung;Nha, Sang-Kyun;Lee, Hee-Kyung;Kim, Hee-Joung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.31 no.1
    • /
    • pp.19-29
    • /
    • 1997
  • Recently, [I-123]IPT SPECT has been used for early diagnosis of Parkinson's patients(PP) by imaging dopamine transporters. The dynamic time activity curves in basal ganglia(BG) and occipital cortex(OCC) without blood samples were obtained for 2 hours. These data were then used to measure dopamine transporters by operationally defined ratio methods of (BG-OCC)/OCC at 2 hrs, binding potential $R_v=k_3/k_4$ using graphic method or $R_A$= (ABBG-ABOCC)/ABOCC for 2 hrs, where ABBG represents accumulated binding activity in basal ganglia(${\int}^{120min}_0$ BG(t)dt) and ABOCC represents accumulated binding activity in occipital cortex(${\int}^{120min}_0$ OCC(t)dt). The purpose of this study was to examine the IPT pharmacokinetics and investigate the usefulness of simplified methods of (BG-OCC)/OCC, $R_A$, and $R_v$ which are often assumed that these values reflect the true values of $k_3/k_4$. The rate constants $K_1,\;k_2\;k_3$ and $k_4$ to be used for simulations were derived using [I-123]IPT SPECT and aterialized blood data with a standard three compartmental model. The sensitivities and time activity curves in BG and OCC were computed by changing $K_l$ and $k_3$(only BG) for every 5min over 2 hours. The values (BG-OCC)/OCC, $R_A$, and $R_v$ were then computed from the time activity curves and the linear regression analysis was used to measure the accuracies of these methods. The late constants $K_l,\;k_2\;k_3\;k_4$ at BG and OCC were $1.26{\pm}5.41%,\;0.044{\pm}19.58%,\;0.031{\pm}24.36%,\;0.008{\pm}22.78%$ and $1.36{\pm}4.76%,\;0.170{\pm}6.89%,\;0.007{\pm}23.89%,\;0.007{\pm}45.09%$, respectively. The Sensitivities for ((${\Delta}S/S$)/(${\Delta}k_3/k_3$)) and ((${\Delta}S/S$)/(${\Delta}K_l/K_l$)) at 30min and 120min were measured as (0.19, 0.50) and (0.61, 0,23), respectively. The correlation coefficients and slopes of ((BG-OCC)/OCC, $R_A$, and $R_v$) with $k_3/k_4$ were (0.98, 1.00, 0.99) and (1.76, 0.47, 1.25), respectively. These simulation results indicate that a late [I-123]IPT SPECT image may represent the distribution of the dopamine transporters. Good correlations were shown between (3G-OCC)/OCC, $R_A$ or $R_v$ and true $k_3/k_4$, although the slopes between them were not unity. Pharmacokinetic computer simulations may be a very useful technique in studying dopamine transporter systems.

  • PDF