• Title/Summary/Keyword: PARAFAC decomposition

Search Result 6, Processing Time 0.026 seconds

S-PARAFAC: Distributed Tensor Decomposition using Apache Spark (S-PARAFAC: 아파치 스파크를 이용한 분산 텐서 분해)

  • Yang, Hye-Kyung;Yong, Hwan-Seung
    • Journal of KIISE
    • /
    • v.45 no.3
    • /
    • pp.280-287
    • /
    • 2018
  • Recently, the use of a recommendation system and tensor data analysis, which has high-dimensional data, is increasing, as they allow us to analyze the tensor and extract potential elements and patterns. However, due to the large size and complexity of the tensor, it needs to be decomposed in order to analyze the tensor data. While several tools are used for tensor decomposition such as rTensor, pyTensor, and MATLAB, since such tools run on a single machine, they are unable to handle large data. Also, while distributed tensor decomposition tools based on Hadoop can handle a scalable tensor, its computing speed is too slow. In this paper, we propose S-PARAFAC, which is a tensor decomposition tool based on Apache Spark, in distributed in-memory environments. We converted the PARAFAC algorithm into an Apache Spark version that enables rapid processing of tensor data. We also compared the performance of the Hadoop based tensor tool and S-PARAFAC. The result showed that S-PARAFAC is approximately 4~25 times faster than the Hadoop based tensor tool.

PARAFAC Tensor Reconstruction for Recommender System based on Apache Spark (아파치 스파크에서의 PARAFAC 분해 기반 텐서 재구성을 이용한 추천 시스템)

  • Im, Eo-Jin;Yong, Hwan-Seung
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.4
    • /
    • pp.443-454
    • /
    • 2019
  • In recent years, there has been active research on a recommender system that considers three or more inputs in addition to users and goods, making it a multi-dimensional array, also known as a tensor. The main issue with using tensor is that there are a lot of missing values, making it sparse. In order to solve this, the tensor can be shrunk using the tensor decomposition algorithm into a lower dimensional array called a factor matrix. Then, the tensor is reconstructed by calculating factor matrices to fill original empty cells with predicted values. This is called tensor reconstruction. In this paper, we propose a user-based Top-K recommender system by normalized PARAFAC tensor reconstruction. This method involves factorization of a tensor into factor matrices and reconstructs the tensor again. Before decomposition, the original tensor is normalized based on each dimension to reduce overfitting. Using the real world dataset, this paper shows the processing of a large amount of data and implements a recommender system based on Apache Spark. In addition, this study has confirmed that the recommender performance is improved through normalization of the tensor.

An Analysis of a Blogosphere using PARAFAC Decomposition (PARAFAC 분해를 이용한 블로그 공간 분석)

  • Kim, Ki-Nam;Kim, Sang-Wook;Kim, Jin-Woo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.1253-1254
    • /
    • 2011
  • 본 논문에서는 블로그 공간을 텐서로 표현하고, 이를 분석한다. 분석 결과에 따르면, PARAFAC 분해를 통하여 특정 주제를 나타내는 커뮤니티들을 올바르게 파악할 수 있었으며, 각 커뮤니티에서 영향력 있는 블로그들과 키워드들, 그리고 권위 있는 포스트들을 식별할 수 있었다.

Ambient modal identification of structures equipped with tuned mass dampers using parallel factor blind source separation

  • Sadhu, A.;Hazraa, B.;Narasimhan, S.
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.257-280
    • /
    • 2014
  • In this paper, a novel PARAllel FACtor (PARAFAC) decomposition based Blind Source Separation (BSS) algorithm is proposed for modal identification of structures equipped with tuned mass dampers. Tuned mass dampers (TMDs) are extremely effective vibration absorbers in tall flexible structures, but prone to get de-tuned due to accidental changes in structural properties, alteration in operating conditions, and incorrect design forecasts. Presence of closely spaced modes in structures coupled with TMDs renders output-only modal identification difficult. Over the last decade, second-order BSS algorithms have shown significant promise in the area of ambient modal identification. These methods employ joint diagonalization of covariance matrices of measurements to estimate the mixing matrix (mode shape coefficients) and sources (modal responses). Recently, PARAFAC BSS model has evolved as a powerful multi-linear algebra tool for decomposing an $n^{th}$ order tensor into a number of rank-1 tensors. This method is utilized in the context of modal identification in the present study. Covariance matrices of measurements at several lags are used to form a $3^{rd}$ order tensor and then PARAFAC decomposition is employed to obtain the desired number of components, comprising of modal responses and the mixing matrix. The strong uniqueness properties of PARAFAC models enable direct source separation with fine spectral resolution even in cases where the number of sensor observations is less compared to the number of target modes, i.e., the underdetermined case. This capability is exploited to separate closely spaced modes of the TMDs using partial measurements, and subsequently to estimate modal parameters. The proposed method is validated using extensive numerical studies comprising of multi-degree-of-freedom simulation models equipped with TMDs, as well as with an experimental set-up.

Nonnegative Tucker Decomposition (텐서의 비음수 Tucker 분해)

  • Kim, Yong-Deok;Choi, Seung-Jin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.3
    • /
    • pp.296-300
    • /
    • 2008
  • Nonnegative tensor factorization(NTF) is a recent multiway(multilineal) extension of nonnegative matrix factorization(NMF), where nonnegativity constraints are imposed on the CANDECOMP/PARAFAC model. In this paper we consider the Tucker model with nonnegativity constraints and develop a new tensor factorization method, referred to as nonnegative Tucker decomposition (NTD). We derive multiplicative updating algorithms for various discrepancy measures: least square error function, I-divergence, and $\alpha$-divergence.

Angle-Range-Polarization Estimation for Polarization Sensitive Bistatic FDA-MIMO Radar via PARAFAC Algorithm

  • Wang, Qingzhu;Yu, Dan;Zhu, Yihai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.2879-2890
    • /
    • 2020
  • In this paper, we study the estimation of angle, range and polarization parameters of a bistatic polarization sensitive frequency diverse array multiple-input multiple-output (PSFDA-MIMO) radar system. The application of polarization sensitive array in receiver is explored. A signal model of bistatic PSFDA-MIMO radar system is established. In order to utilize the multi-dimensional structure of array signals, the matched filtering radar data can be represented by a third-order tensor model. A joint estimation of the direction-of-departure (DOD), direction-of-arrival (DOA), range and polarization parameters based on parallel factor (PARAFAC) algorithm is proposed. The proposed algorithm does not need to search spectral peaks and singular value decomposition, and can obtain automatic pairing estimation. The method was compared with the existing methods, and the results show that the performance of the method is better. Therefore, the accuracy of the parameter estimation is further improved.