• 제목/요약/키워드: PAR (Power Augmented Ram)

검색결과 4건 처리시간 0.015초

3차원 PAR WIG (Powder Augmented Ram Wing in Ground Effect) 의 수치연구 (Flow analysis of 3-Dimensional Power-Augmented Ram Wing in Ground Effect)

  • 곽승현
    • 한국해양공학회지
    • /
    • 제11권1호
    • /
    • pp.55-64
    • /
    • 1997
  • A wing operating in close proximity to the ground exhibits a reduction in induced drag, which increase the lift/drag ratio. The poert-augmented ram (RAR) phenomenon involves directiing the efflux from forward mounted propulsion ststem under the wings, with the efflux nearly stagnated under the wings. In the present paper, 3 dimentional PAR was numerically studied by solving the Navier-Stokes equations. Pressure distribution and velocity vectors are calculated around the wing surface and the ground. Through the numerical simulation, Cp values and lift/drag ratio are carefully reviewed by changing the height/chord; 0.05, 0.1, 0.3 and 0.8. The shape of model is NACA 0012 with a span/chord ratio of 3.0. According to the numerical results, the relationship between lift/drag and height/chord is fairly reasonable.

  • PDF

PARWIG선의 공력특성에 관한 풍동실험 (Wind Tunnel Test on the Aerodynamic Characteristics of a PARWIG Craft)

  • 전호환;장종희;백광준;신명수
    • 대한조선학회논문집
    • /
    • 제37권3호
    • /
    • pp.57-68
    • /
    • 2000
  • 이착륙 속력을 줄이기 위해 날개 밑으로 프로펠러 후류를 불어넣어 날개와 수면사이의 압력을 증가시키는 PAR(Power Augmented Ram) 효과는 해면효과익선의 성능을 크게 향상시킨다. 본 논문에서는 풍동실험을 통해 이러한 PARWIG(Wing in Ground)선의 공력특성을 연구하였으며 송풍기(blower)와 덕트(duct)를 사용한 제트분사를 프로펠러 후류로 대신하였다. 제트의 분사속도, 분사위치(수평 및 수직 방향), 분사각 및 덕트 직경 변화에 대해 20인승 PARWIG선의 1/25 축소 모형선의 지면과의 고도, 앙각 및 플랩각의 변화에 따른 양력, 항력 및 피치모멘트를 계측하여 공력특성을 비교하였다. 적절한 PAR효과의 사용은 양력을 크게 증가시키며 최대 4의 양력계수까지 얻을 수 있었다.

  • PDF

3차원 표면효과익의 자유표면 효과에 관한 수치연구

  • 곽승현
    • 한국해양공학회지
    • /
    • 제12권2호통권28호
    • /
    • pp.79-86
    • /
    • 1998
  • A three-dimensional WIG (Wing In Ground effect) moving above free surface is numerically studied by means of finite difference techniques. The air flow field around the WIG is analyzed by MAC (Marker & Cell) method, and interactions between WIG and the free surface are appeared as the variation of pressure distribution acting on the free surface. To analyze the wavemaking phenomena by those pressure distributions, the NS (Navier-Stokes) solver is employed in which nonlinearities of the free surface conditions can be included. Through the numerical simulation, Cp values and lift/drag ratio are carefully reviewed by changing the height/chord ratio. The section shape of model is NACA0012 with the span/chord ratio of 3.0. Through computational results, it is confirmed that the effect of free surface is small enough to treat it as a rigid wavy wall.

  • PDF

Lift/Drag Prediction of 3-Dimensional WIG Moving Above Free Surface

  • Kwag, Seung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제15권3호
    • /
    • pp.384-391
    • /
    • 2001
  • The aerodynamic effects of a 3-dimensional Wing in Ground Effect (WIG) which moves above the free surface has been numerically investigated via finite difference techniques. The air flow field around a WIG is analyzed by a Marker & Cell (MAC) based method, and the interactions between WIG and the free surface are studied by the pressure distributions on the free surface. Waves are generated by the surface pressure distribution, and a Navier-Stokes solver has been employed, to include the nonlinearities in the free surface conditions. The pressure values Cp and lift/drag ratio are reviewed by changing the height/chord ratio. In the present computations a NACA0012 airfoil with a span/chord ratio of 3.0 are treated. Through computational results, it is confirmed that the free surface can be treated as a rigid wavy wall.

  • PDF