• Title/Summary/Keyword: PAOs

Search Result 23, Processing Time 0.019 seconds

A Study on Adjustment of Operational Factor in A2O process (A2O공정 운전인자 조정에 대한 연구)

  • Yoo, Ho-Sik;Lee, Byonghi
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.3
    • /
    • pp.33-41
    • /
    • 2015
  • An alternative was investigated to maximize the treatment efficiency of wastewater treatment plant without large scale expansion. 79% of detention time was required for enough nitrogen control. As aeration time was extended, nitrification was processed, but opposite trend was seen in phosphorus. High concentration of $NO_3-N$ interrupted PAOs activity not to absorb phosphorus. An alternative was devised for selective use of anaerobic or anoxic zone. Trisection was suggested for alternative use of center room. The result was relatively successful. The concentration of phosphorus was reduced with reduction of nitrogen. Extended anaerobic condition seemed to stimulate denitrification. Valve connection of internal return from aeration tank will make it possible to use middle room alternatively. This method will be a good alternative for seasonal variation of water temperature.

Phosphorus Removal by DPAOs (Denitrifying Phosphorus Accumulating Organisms) in Aerobic Condition (호기 조건에서 DPAOs (Denitrifying Phosphorus Accumulation Organisms)에 의한 인 제거)

  • Jeong, No-Sung;Park, Young-Seek;Kim, Dong-Seog
    • KSBB Journal
    • /
    • v.25 no.1
    • /
    • pp.62-66
    • /
    • 2010
  • This study was carried out to get phosphorus uptake rate in aerobic condition with nitrate and nitrite. Nitrate and nitrite inhibited phosphorus accumulating organisms' (PAOs') luxury uptake in aerobic condition. Nitrite awfully decreased the phosphorus uptake rate in aerobic condition. At the influent of 10 mg ${NO_3}^-$-NL, the phosphorus uptake was decreased to 52% comparing that at no influent of nitrate. And at the influent of 10 mg ${NO_2}^-$-NL, the phosphorus uptake was decreased to 28% comparing that at no influent of nitrite. At the influent of 20 mg ${NO_3}^-$-NL, nitrite and nitrate were co-existed and the phosphorus uptake rate was decreased to 16% comparing that at no influent of nitrite and nitrate. Also, the denitrification was occurred by denitrifying glycogen accumulating organisms (DGAOs)/denitrifying phosphorus accumulating organisms (OPAOs) in spite of aerobic condition, and the phosphorus uptake rate was increased by the decrease of influent nitrate concentration at the aerobic condition. The inflection point in the phosphorus uptake rate was shown at the nitrite concentration of 1.5~2 mg/L.

Toxic Effects of Binary Mixtures of Heavy Metals on the Growth and P Removal Efficiencies of Alcaligenes sp. (Alcaligenes sp.의 생장과 인 제거에 미치는 이종 중금속 혼합의 독성 효과)

  • Kim, Deok Hyun;Yoo, Jin;Chung, Keun Yook
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.1
    • /
    • pp.79-86
    • /
    • 2016
  • BACKGROUND: This study was initiated to quantitatively evaluate the effects of five heavy metals on the growth and P removal efficiencies of Alcaligenes sp., known as the Phosphorus Accumulating Organisms (PAOs). It was cultivated in the batch system with five heavy metals, such as Cd, Cu, Zn, Pb and Ni, added in single and binary mixtures, respectively.METHODS AND RESULTS: IC50 (half of inhibition concentration of bacterial growth) and EC50 (half of effective concentration of phosphorus removal Efficiencies) were used to quantitatively evaluate the effects of heavy metals on the growth and phosphorus removal Efficiencies of Alcaligenes sp. In addition, Additive Index Value (A.I.V.) method was used to evaluate the interactive effects between Alcaligenes sp. and heavy metals. As a result, as the five heavy metals were singly added to Alcaligenes sp., the greatest inhibitory effects on the growth and P removal efficiencies of each bacteria was observed in the cadmium (Cd). In the binary mixture treatments of heavy metals, the treatments of lowest IC50 and EC50 were the Cd + Cu treatment. Based on the IC50 and EC50 of the binary mixtures of heavy metals treatments, most interactive effects between the heavy metals were found to be antagonistic.CONCLUSION: Based on the results obtained from this study, it appears that they could provide the basic information about the toxic effects of the respective treatments of single and binary mixtures of heavy metals on the growth and P removal efficiencies of Alcaligenes sp. through further study about the characterization of functional proteins involved in toxic effects of heavy metals.