• Title/Summary/Keyword: PAN-based activated carbon fiber

Search Result 18, Processing Time 0.027 seconds

The Preparation of PAN-based Activated Carbon Fiber by KOH (KOH 활성화에 의한 PAN계 활성탄소섬유의 제조)

  • 김기원;정승훈;임연수;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.6
    • /
    • pp.577-582
    • /
    • 1999
  • Activated carbon fibers were prepared from stabilized PAN fibers by chemical activation using hydroxide. The variations in specific surface area amount of iodine adsorption micro-structure and pore size distribution in the activated carbon fibers after the activation process were discussed. In the chemical activation using potassium hydroxide specific surface area of about 2545m2/g and amount of iodine adsorption of 2049 mg/g were obtained at the condition of KOH/fiber ratio of 1 and 800$^{\circ}C$ Nitrogen adsorption isotherms for PAN based activated carbon fibers showed the type I in the Brunauer-Deming-Deming-Teller classification indicating the micro-pores consisting the activated fibers.

  • PDF

Preparation of Activated Carbon Fiber-Ceramic Composites and Its Physical Properties (활성탄소섬유-세라믹복합체의 제조 및 물성)

  • 이재춘;박민진;김병균;신경숙;이덕용
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.56-62
    • /
    • 1997
  • The PAN (Polyacrylonitrile) based carbon fiber-ceramic composites (CFCC) were prepared from mixtures of short carbon fibers, phenolic resin and ceramic binder. The effects of carbonization temperature of a pre-cursor fiber, the stabilized PAN fiber, on the specific surface area and the bending strength of the activated CFCC were studied in this work. The precursor fiber was carbonized at 80$0^{\circ}C$ and 100$0^{\circ}C$, respectively. The CFCC were activated at 85$0^{\circ}C$ in carbon dioxide for 10~90 minutes. As the burn-off of the activated CFCC made of the precursor fiber carbonized at 80$0^{\circ}C$ was increased from 37% to 76%, the specific surface area in-creased from 493m2/g to 1090m2/g, and the bending strength decreased from 4.5MPa to 1.4MPa. These values were about two times larger than those of the activated CFCC of which precursor fiber was car-bonized at 100$0^{\circ}C$. The effects of carbonization temperature of a precursor fiber on the specific surface area and bending strength of the activated CCFC were explained by bonding force between carbon fiber and car-bonized phenolic resin as well as by relative shirnkage between carbon fiber and ceramic film.

  • PDF

NO Reduction and Oxidation over PAN based-ACF

  • Kim, Je-Young;Lee, Jong-Gyu;Hong, Ik-Pyo
    • Carbon letters
    • /
    • v.1 no.1
    • /
    • pp.17-21
    • /
    • 2000
  • Catalytic reduction and oxidation of NO over polyacrylonitrile based activated carbon fibers (PAN-ACF) under various conditions were carried out to develop removal process of NO from the flue gas. The effect of temperature, oxygen concentration and the moisture content for the reduction of NO with ammonia as a reducing agent was investigated. The reduction of NO increased with the oxygen concentration, but decreased with the increased temperature. The moisture content in the flue gas affects the reduction of NO as the inhibition of the adsorption of the other components and the reaction on the surface of ACE For the oxidation of NO to $NO_2$ over PAN-ACF without using a reducing gas, it showed the temperature and the oxygen concentration of the flue gas are the important factors for the NO conversion in which the conversion increased with oxygen concentration and decreased with the temperature increase and might be the alternative option for the selective catalytic reduction process.

  • PDF

Effects of pore structures on electrochemical behaviors of polyacrylonitrile-based activated carbon nanofibers by carbon dioxide activation

  • Lee, Hye-Min;Kim, Hong-Gun;An, Kay-Hyeok;Kim, Byung-Joo
    • Carbon letters
    • /
    • v.15 no.1
    • /
    • pp.71-76
    • /
    • 2014
  • Activated carbon nanofibers (ACNF) were prepared from polyacrylonitrile (PAN)-based nanofibers using $CO_2$ activation methods with varying activation process times. The surface and structural characteristics of the ACNF were observed by scanning electron microscopy and X-ray diffraction, respectively. $N_2$ adsorption isotherm characteristics at 77 K were confirmed by Brunauer-Emmett-Teller and Dubinin-Radushkevich equations. As experimental results, many holes or cavernous structures were found on the fiber surfaces after the $CO_2$ activation as confirmed by scanning electron microscopy analysis. Specific surface areas and pore volumes of the prepared ACNFs were enhanced within a range of 10 to 30 min of activation times. Performance of the porous PAN-based nanofibers as an electrode for electrical double layer capacitors was evaluated in terms of the activation conditions.

Preparation of PAN-based Activated Carbon Fibers by Physical Activation (물리적 활성화에 의한 PAN계 활성탄소섬유의 제조)

  • 임연수;김기원;정승훈;김기덕;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1016-1021
    • /
    • 1999
  • In this study activated carbon fibers were prepared from PAN-based carbon fibers by physical activation with steam or carbon dioxide. The variations in specific surface area amount of iodine adsorption and pore size distribution of the activated carbon fibers after the activation process were discussed. in steam activation BET surface area of about 1019 m2/g was obtained after 77% burn-off while carbn dioxide activation produced ACF with 694m2/g of BET surface area after 52% burn-off. However carbon dioxide activation produced at a similar degree of activation higher micropore volume(0.37 cc/g) and amount of iodine adsorption (1589mg/g) than steam activation. Nitrogen adsorption isotherms for (PAN based activated carbon fibers that prepared by physical activation were of type I in the Brunauer-Deming-Deming-Teller classification

  • PDF

Preparation and Analysis of Activated Carbon Fiber from PAN Precursor(I) (PAN 선구체로부터 활성 탄소섬유의 생산과 분석(I))

  • 김진홍;이화선;박병기;정경락;김공주
    • Textile Coloration and Finishing
    • /
    • v.4 no.4
    • /
    • pp.90-96
    • /
    • 1992
  • In the PAN-based ACF manufacturing system stabilization step was improved with chemical treatment (preoxidation) in order to yield higher carbon content and to avoid excessive fragmentation during carbonization and activation process. The optimal condition of preoxidation was at 18$0^{\circ}C$ for 4 minutes in sodium glyceroxide in glycerine (concentration of NaOH was 0.02 meq/g). To investigate low temperature stabilization effect, preoxidized PAN fiber heated 22$0^{\circ}C$ to 26$0^{\circ}C$ as a function of treatment time and oxidative gas atmosphere, and analysed by infrared spectrum and TGA. As a results of IR and TGA, it was clear that impregnated[preoxidative] PAN had 14% higher residual than untreated PAN at 100$0^{\circ}C$ and the optimal condition of stabilization was at 26$0^{\circ}C$ for 3.5 hours within $N_2$ atmosphere.

  • PDF

Effect of Pore Structure of Activated Carbon Fiber on Mechanical Properties (활성탄소섬유의 기공구조가 기계적 특성에 미치는 영향)

  • Choi, Yun Jeong;Lee, Young-Seak;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.318-324
    • /
    • 2018
  • In this study, PAN (polyacrylonitrile) based activated carbon fibers were prepared by water vapor activation method which is a physical activation method. Activation was performed with temperature and time as parameters. When the activation temperature reached 700, 750 and $800^{\circ}C$, the activation was carried out under the condition of a water vapor flow rate of 200 ml/min. In order to analyze the pore structure of activated carbon fibers, the specific surface area ($S_{BET}$) was measured by the adsorption/desorption isotherm of nitrogen gas and AFM analysis was performed for the surface analysis. Tensile tests were also conducted to investigate the effect of the pore structure on mechanical properties of fibers. As a result, the $S_{BET}$ of fibers after the activation showed a value of $448{\sim}902m^2/g$, the tensile strength decreased 58.16~84.92% and the tensile modulus decreased to 69.81~83.89%.

SO2 Adsorption Characteristics of PAN-based Activated Carbon Fiber Impregnated with Palladium and Gold Nanoparticles (팔라듐과 금 나노입자를 첨착한 PAN계 활성탄소섬유의 SO2 흡착특성)

  • Lee, Jin-Jae;Jun, Moon-Gue;Kim, Young-Chai
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.467-474
    • /
    • 2007
  • The palladium and gold nanoparticles containing PAN-based active carbon fiber (ACF) with a high specific surface area were prepared. Using the BET, TEM, FE-SEM, and XPS, their specific surface area and pore volume, pore structure, and the change in surface oxygen groups with time were analyzed and $SO_2$ adsorption performances were investigated. Because of the impregnating process, the micropore volume was mostly decreased from 95.5% to 30.5~43.7% compared with the total pore volume. And the change in surface oxygen groups with time was higher for the metal salt than the nanoparticles. Also, $SO_2$ breakthrough time of PAN-ACFs impregnated with Au nanoparticles and metal salts did not change compared with that of the non-impregnated PAN-ACF. But the PAN-ACF impregnated with Pd nanoparticles (100 ppm) showed good $SO_2$ adsorption performance as the breakthrough time of 880 sec. These results indicated that the $SO_2$ adsorption performance depended on the change in surface oxygen groups with time and the moderate impregnation of Pd nanoparticles on the PAN-ACF caused the increase in the $SO_2$ adsorption performance by a catalytic action.

Preparation and Characterization of OXI-PAN Based Carbon Fibers Activated by Hydroxides (수산화물에 의해 활성화된 OXI-PAN계 섬유의 제조 및 특성)

  • Moon, Sook-Young;Han, Dong-Yun;Lee, Byung-Ha;Lim, Yun-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.7 s.278
    • /
    • pp.469-474
    • /
    • 2005
  • Activated Carbon Fibers (ACFs) are widely used as adsorbents in technologies related to pollution abatement due to their highly porous structure and large adsorption capacity. The porous structure and surface area of ACFs depends strongly on both the activation processes arid the nature .of the precursors. The chemical activation with hydroxides has recently been, of great interest as it permits the preparation of activated carbon fibers with highly developed porosity. In this work, OXI-PAN fiber used as precursor for the preparation of activated carbon fibers by chemical activation with KOH and NaOH. The affects of several activation conditions on the surface properties, pore size distribution and adsorption capacity of Ag ion and Iodine ion on ACFs studied.

The Preparation of Low Cost Activated Carbon Fibers for Removal of Volatile Organic Chemicals and Odor (저가 탄소섬유를 이용한 악취제거 기술 개발)

  • Lim, Yun-Soo;Yoo, Ki-Sang;Kim, Hee-Seok;Chung, Yun-Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.10
    • /
    • pp.928-935
    • /
    • 2001
  • In this study, two kinds of activated carbon fibers were prepared from PAN-based stabilized fibers by physical activation with steam. The variations in specific surface area, amount of iodine adsorption and pore size distribution of the activated carbon fibers after the activation process were discussed. The activated carbon fibers were prepared by two different methods, namely a 1- and 2-step method. For the 2-step method, carbonization of fibers in $N_2$ atmosphere was carried out to make carbon fibers and then activated by steam. In normal two step steam activation, BET surface area of about $1019m^2/g$ was obtained in the study. In the 1-step steam activation process, the carbonization and activation were simultaneously carried out. In the one step steam activation, BET surface area of $1635m^2/g$ was obtained after heat-treatment at $990^{\circ}C$. However, nitrogen adsorption isotherms for oxidized PAN based activated carbon fibers that were prepared by both methods were type I in the Brunauer-Deming-Deming-Teller (BDDT) classification even though they have different BET surface areas, amounts of iodine adsorption and pore size distributions.

  • PDF