• Title/Summary/Keyword: PAM-STAMP 2G

Search Result 4, Processing Time 0.02 seconds

Spring-back Prediction of DP980 Steel Sheet Using a Yield Function with a Hardening Model (항복함수 및 경화모델에 따른 DP980 강판의 스프링백 예측)

  • Kim, J.H.;Kang, G.S.;Lee, H.S.;Kim, J.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.25 no.3
    • /
    • pp.189-194
    • /
    • 2016
  • In the current study, spring-back of DP980 steel sheet was numerically evaluated for U-bending using a yield function with a hardening model. For spring-back prediction, two types of yield functions - Hill'48 and Yld2000-2d - were considered. Additionally, isotropic hardening and the Yoshida-Uemori model were used to investigate the spring-back behavior. The parameters for each model were obtained from uniaxial tension, uniaxial tension-compression, uniaxial tension-unloading and hydraulic bulging tests. The numerical simulations were performed using the commercial software, PAM-STAMP 2G. The results were compared with experimental data from a U-bending process.

Weldline Movement Characteristics for the Warm Deep Drawing of Tailor Welded Blanks (용접 판재의 온간 성형에서의 용접선 이동 특성)

  • Yoo J. S.;Heo Y. M.;Lee S. M.;Seo D. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.151-155
    • /
    • 2001
  • The purpose of this study is to investigate the weldline movement of the laser welded sheets during the warm deep drawing process. For this investigation, Five steps of temperature ranges, from room temperature to $200^{\circ}C$, and two kinds of thickness combination, 0.8 mm${\times}$1.2 mm and 0.8 mm${\times}$1.6 mm SCP1 material sheets, were adopted. Also, the numerical analysis using the PAM-STAMP has been carried out with the same models as the specimens. As a result the higher temperature was adopted, the less weld-line movement was observed.

  • PDF

Forming Simulation of EV Motor Hairpin by Implementing Mechanical Properties of Polymer Coated Copper Wire (고분자 필름 및 구리선 이종 물성을 고려한 EV모터용 헤어핀 성형 공정 해석)

  • D. C. Kim;Y. J. Lim;M. Baek;M. G. Lee;I. S. Oh
    • Transactions of Materials Processing
    • /
    • v.32 no.3
    • /
    • pp.122-128
    • /
    • 2023
  • As electric vehicles (EV) have increasingly replaced the conventional vehicles with internal combustion engines (ICE), most of automotive makers are actively devoting to the technology development of EV parts. Accordingly, the manufacturing process for power source has been also shifting from engine/transmission to EV motor/reducer system. However, lack of experience in developing the EV motor still remains as a technical challenge. In this paper, we employed the forming simulation based on finite element modeling to solve this problem. In particular, in order to increase the accuracy of the forming simulation, we introduced the elastic-plastic constitutive model parameters for polymer-copper hybrid wire by investigating the individual strain-stress curves, and elastic modulus of polymer and copper. Then, the reliability of modeling procedure was confirmed by comparing the simulated results with experiments. Finally, the identified mechanical properties and finite element modeling were applied to a hairpin forming process, which involves multiple deformation paths such as bending, pressing, widening, and twisting. The proposed numerical approach can replace common experience or experiment based trials by reducing production time and cost in the future.