• Title/Summary/Keyword: PALS(Positron Annihilation Lifetime Spectroscopy)

Search Result 3, Processing Time 0.015 seconds

Study on the Free Volume in Polymer by Positron Annihilation Lifetime Spectroscopy (PALS) (양전자소멸 수명시간 측정을 통한 폴리머소재의 자유부피에 관한 연구)

  • Kim, Yongmin;Shin, Jungki;Kwon, Junhyun
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.6
    • /
    • pp.489-493
    • /
    • 2012
  • Positron Annihilation Lifetime Spectroscopy is a non-destructive technique to study voids and defects in solids by the measurement of gammas from electron-positron annihilation. In this study, we measured the lifetime of CR, EPDM, NBR, all of which are widely used polymer in various fields. A conventional fast-fast coincidence system in KAERI(Korea Atomic Energy Research Institute) has been used to measure the lifetime spectra, Three lifetime components were analyzed from each lifetime spectra. According to Tao-Eldrup model equation, the size and fraction of free-volume were calculated. Mean radius and free volume fraction of CR, EPDM NBR are $0.1217nm^3$(1.9103%), $0.14780nm^3$(5.3147%), $0.1216nm^3$(2.6381%), respectively. Through these measurements, we identified the feasibility of the PAL system for polymer analysis.

Positron Annihilation Lifetime Spectroscopic Analysis to Demonstrate Flux-Enhancement Mechanism of Aromatic Polyamide Reverse Osmosis Membranes (양전자 소멸시간 분광분석을 통한 방향족 폴리아미드 역삼투 분리막의 수투과 향상 메커니즘 제시)

  • Kim, Sung-Ho;Kwak, Seung-Yeop
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.82-85
    • /
    • 2004
  • Flux-enhancement mechanism of thin-film-composite (TFC) membranes for the reverse comosis (RO) process was newly explained by positron annihilation lifetime spectroscopy (PALS) that has been found to be applied for detecting molecular vacancies or pores having sizes that are equivalent to salt or hydrate ions in RO membrane.(omitted)

  • PDF

Unusual Glassy Polymer Membranes for High Gas Permeation

  • Park, Ho-Bum;Jung, Chun-Ho;Han, Sang-Hoon;Lee, Young-Moo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.125-126
    • /
    • 2006
  • We show that thermal rearrangement of glassy polymers below the thermal degradation temperature can create unexpected and large microvoids in the membranes, leading to unexpected high gas permeability with high gas selectivity. These current polymer membranes display unexpected gas permeation-separation performance. There are above the upper-bound for conventional polymer membranes for several gas pairs. In the present study, molecular simulation, BET sorption, positron annihilation lifetime spectroscopy (PALS), and gas separation experiments were performed to characterize the unusual structure-property relationship of these rigid glassy polymer membranes.

  • PDF