• Title/Summary/Keyword: PAH-degrading bacteria.

Search Result 14, Processing Time 0.02 seconds

Effect of Rhamnolipids on Degradation of Anthracene by Two Newly Isolated Strains, Sphingomonas sp. 12A and Pseudomonas sp. 12B

  • Cui, Chang-Zheng;Zeng, Chi;Wan, Xia;Chen, Dong;Zhang, Jia-Yao;Shen, Ping
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.63-66
    • /
    • 2008
  • Anthracene is a PAH that is not readily degraded, plus its degradation mechanism is still not clear. Thus, two strains of anthracene-degrading bacteria were isolated from long-term petroleum-polluted soil and identified as Sphingomonas sp. 12A and Pseudomonas sp. 12B by a 16S rRNA sequence analysis. To further enhance the anthracene-degrading ability of the two strains, the biosurfactants produced by Pseudomonas aeruginosa $W_3$ were used, which were characterized as rhamnolipids. It was found that these rhamnolipids dramatically increased the solubility of anthracene, and a reverse-phase HPLC assay showed that the anthracene degradation percentage after 18 days with Pseudomonas sp. 12B was significantly enhanced from 34% to 52%. Interestingly, their effect on the degradation by Sphingomonas sp. 12A was much less, from 35% to 39%. Further study revealed that Sphingomonas sp. 12A also degraded the rhamnolipids, which may have hampered the effect of the rhamnolipids on the anthracene degradation.

Effective Biodegradation of Polyaromatic Hydrocarbons Through Pretreatment Using $TiO_2$-Coated Bamboo Activated Carbon and UV ($TiO_2$로 코팅된 대나무숯 및 UV의 전처리를 통한 다환방향족탄화수소의 효율적 생분해)

  • Ekpeghere, Kalu I.;Koo, Jin-Heui;Kim, Jong-Hyang;Lee, Byeong-Woo;Yi, Sam-Nyung;Kim, Yun-Hae;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.47 no.2
    • /
    • pp.137-142
    • /
    • 2011
  • $TiO_2$-coated bamboo activated carbon has been prepared and utilized under UV irradiation as a pretreatment method for an effective biodegradation of the recalcitrant polyaromatic hydrocarbons (PAHs). The anatase $TiO_2$ was successfully coated on the bamboo activated carbon (AC) and it showed the highest photoactivity against methylene blue. In the absence of the PAHs-degrading bacteria PAHs having low molecular weight (i.e., naphthalene, acenaphthylene, acenaphthene, and fluorene) were degraded by 9.8, 76.2, 74.1, and 40.5%, respectively. Higher molecular weight PAHs, however, maintained high residual concentrations of PAHs (400-1,000 ${\mu}g$/L) after the same treatment. On the other hand, the overall concentrations of PAHs became lower than 340 ${\mu}g$/L when the pretreated PAHs were subjected to biodegradation by a PAH-degrading consortium for a week. Herein, phenanthrene, anthracene, fluoranthene, and pyrene were removed by 29.3, 61.4, 27.0, and 44.3%, respectively, indicating the facilitated potential biodegradation of PAHs. Activated carbon coated with $TiO_2$ appeared to inhibit growth of PAH degraders on the surface of AC, indicating planktonic degraders were dominantly involved in the PAH biodegradation in presence of the $TiO_2$-coated bamboo AC. It was proposed that an effective remediation technology for the recalcitrant PAHs could be developed when an optimum pretreatment process is further established.

Bioremediation of Polycyclic aromatic hydrocarbons (PAHs) and Heavy metals in contaminated marine sediments at filed scale study using biostimulant ball (오염연안저질에 함유된 PAH와 중금속의 생물정화를 위한 생물활성촉진제의 현장적용)

  • Woo, Jung-Hui;Subha, Bakthavachallam;Song, Young-chae
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.132-134
    • /
    • 2016
  • The Study mainly focused on bioremediation of 16 types PAHs and heavy metals in contaminated marine sediments at filed scale study using slow release biostimulant ball (BSB) was investigated. In our experiment, filed scale study ($1m{\times}1m$) was performed and the effect of BSB on PAHs and heavy metals were analysed. BSB size and distance were determined and optimum size and distance were 3cm and 5.5cm respectively. BSB containing nutrients of acetate, nitrate and sulphate which can enhance the activity of microorganism to increase degrading capacity of PAHs and enhance the heavy metals stabilization also to decrease bioavailability. PAHs containing 16 types of 2, 3, 4, 5 and 6 rings compound PAHs were found and to degrade upto 100% in 2, 3 rings, upto 90 to 94% in 4 and 5 rings and 6 ring compound was degrade up to 70%. For heavy metals stabilization percentage was increased using BSB sediment and exchangeable portion was decreased and residual portion was increased in all analysed heavy metals. BSB enhance the PAHs degradation and stabilization of heavy metals percentages. BSB is a promising method for remediation of PAHs and heavy metals in contaminated marine sediments.

  • PDF

PAHs Degrading Bacterium Separation and Identification for Biological Treatment (PAHs의 생물학적 처리를 위한 분해 미생물 분리 동정)

  • Kim, Man;Choi, Kyoung-Kyoon;Go, Myong-Jin;Park, Jeong-Hun
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.6
    • /
    • pp.70-77
    • /
    • 2007
  • Pseudomonas sp. KM1 was separated from soil contaminated by petroleum and identified. The isolated strain is Gram-positive, rod-shaped and immotile. In batch culture, the optimum cultivation temperature and pH was $35^{\circ}C$ and 7, respectively. Biodegradation of PAHs experiment with soil slurry system was performed using Pseudomonas sp. KM1. Pseudomonas sp. KM1 could degrade 7 PAHs including naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, pyrene, and fluoranthene. These mixed PAHs was easily degraded within one day except fluoranthene, which was degraded much slowly, taking several days by this isolated bacteria. Pseudomonas sp. KM1 is good candidate for bioremediation of PAHs contaminated soils. Biodegradation rates of naphthalene, phenanthrene and pyrene in soils were different at each soil, and the rates were decreased as sorption capacity increased.