• Title/Summary/Keyword: PACAP

Search Result 16, Processing Time 0.017 seconds

Mechanism of Pituitary Adenylate Cyclase-Activating Polypeptide-Induced Inhibition on Catecholamine Secretion Evoked by Cholinergic Stimulation and Membrane Depolarization in the Rat Adrenal Gland

  • Lim, Dong-Yoon;Kang, Jeong-Won;Kim, Young-Jo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.3
    • /
    • pp.339-350
    • /
    • 1999
  • The present study was attempted to examine the effect of pituitary adenylate cyclase-activating polypeptide (PACAP) on catecholamine (CA) secretion evoked by cholinergic stimulation, membrane depolarization and calcium mobilization from the isolated perfused rat adrenal gland. The perfusion of PACAP (10 nM) into an adrenal vein for 60 min produced a great inhibition in CA secretion evoked by ACh $(5.32{\times}10^{-3}\;M),$ high $K^+\;(5.6{\times}10^{-2}\;M),$ DMPP $(10^{-4}\;M\;for\;2\;min),$ McN-A-343 $(10^{-4}\;M\;for\;2\;min),$ cyclopiazonic acid $(10^{-5}\;M\;for\;4\;min)$ and Bay-K-8644 $(10^{-5}\;M\;for\;4\;min).$ Also, in the presence of neuropeptide (NPY), which is known to be co-localized with norepinephrine in peripheral sympathetic nerves, CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were also significantly depressed. However, in adrenal glands preloaded with PACAP (10 nM) under the presence of VIP antagonist $[(Lys^1,\;Pro^{2.5},\;Arg^{3.4},\;Tyr^6)-VIP\;(3\;{\mu}M)]$ for 20 min, CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were not altered greatly in comparison to the case of PACAP-treatment only. Taken together, these results suggest that PACAP causes the marked inhibition of CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization, indicating that this effect may be mediated by inhibiting influx of extracellular calcium and release in intracellular calcium in the rat adrenomedullary chromaffin cells.

  • PDF

A Study on the Moderating Effects of Motivation in Technological Entrepreneurship, Absorption Capacity and Creative Product in the Convergence Era (융복합시대의 기술적 기업가정신, 흡수역량과 창의성과 간에서 동기부여의 조절효과에 관한 연구)

  • Cho, Yong-Hwa;Han, Byung-Cheol;Kim, Eun-Kyeong;Song, Chan-sub;Lee, Sun-Kyu
    • Journal of Digital Convergence
    • /
    • v.16 no.12
    • /
    • pp.243-256
    • /
    • 2018
  • To use external knowledge for Creative product, This study suggests the model of Technological entrepreneurship, Absorptive capacity - Potential absorptive capacity(PACAP), Realized absorptive capacity (RACAP), Creative product and moderating effect of Motivation. This model was set up though literature research method. Empirical analysis was conducted by using 487 questionnaires from workers of electronic industry in Kyung-buk. Results of study are as followings; 1. Technological entrepreneurship related positively to Creative product. 2. Creative product was affected through process in order of Technological entrepreneurship, PACAP, RACAP. 3. Intrinsic motivation strengthens the relation between Technological entrepreneurship and PACAP. 4. Extrinsic motivation strengthens the relation between PACAP and RACAP. This results will contribute to the improvement of Creativity and the utilization of external knowledge.

Temporal Changes in the Local Expression of Central Hormone-Regulating Factors in Rat Testis

  • Si-On You;Han-Seo Yoon;Hye-Soo Kim;Jin-Soo Park;Sung-Ho Lee
    • Development and Reproduction
    • /
    • v.28 no.1
    • /
    • pp.21-28
    • /
    • 2024
  • Present study aimed to investigate the temporal changes in expression of some reproductive hormones in testis, originally found in hypothalamus and pituitary. Rats were sacrificed on postnatal day 23 (PND23; immature), pubertal (PND53) and PND 81 (young adult). The testicular RNAs were extracted, and semi-quantitative PCRs for gonadotropin-releasing hormone (GnRH), kisspeptin 1 (KiSS1), pituitary adenylate cyclase-activating polypeptide (PACAP), LH subunits and LH receptor were performed. Transcript levels of GnRH and KiSS1 at PND23 were significantly higher than levels of PND53 and PND81 (p<0.001). PACAP mRNA level at PND23 was significantly lower than those of PND53 and PND81 (p<0.001). The mRNA levels of both testis type and pituitary type luteinizing hormone β subunit (tLHβ and pLHβ, respectively) at PND23 were significantly lower than levels of PND53 and PND81 (p<0.001). The mRNA level of glycoprotein hormone common alpha subunit (Cgα) at PND23 was significantly lower than those of PND53 and PND81 (p<0.001). Present study revealed the intratesticular expression of KiSS1 and GnRH showed a very similar trend while the expression of PACAP in the testis showed reversed pattern. The expressions of LHβ subunits (tLHβ and pLHβ) were very low during immature stage then increased significantly during puberty and early adulthood. Our attempt to study the local role(s) of intratesticular factors will be helpful to achieve precise understanding on the testis physiology and pathology.

[ $P2X_2$ ] Receptor Activation Potentiates PC12 Cell Differentiation Induced by ACAP in Acidic Environments

  • Lee, Myung-Hoon;Nam, Jin-Sik;Ryu, Hye-Myung;Yoo, Min;Lee, Moon-Hee
    • Biomedical Science Letters
    • /
    • v.13 no.3
    • /
    • pp.197-206
    • /
    • 2007
  • P2X receptors are membrane-bound ion channels that conduct $Na^+,\;K^+$, and $Ca^{2+}$ in response to ATP and its analogs. There are seven subunits identified so far ($P2X_1-P2X_7$). $P2X_2$ receptors are known to be expressed in a wide range of organs including brains and adrenal grands. PC12 cells are originated from adrenal grand and differentiated by nerve growth factor or pituitary adenylate cyclase activating poly peptide (PACAP). Previous studies indicate that $P2X_2$ receptor activation in PC12 cells couples to $Ca^{2+}-dependent$ release of catecholamine and ATP. It is known that acidic pH potentiates ATP currents at $P2X_2$ receptors. This leads to a hypothesis that $P2X_2$ receptors may play an important role in PC12 cell differentiation, one of the characteristics of which is neurite outgrowth, induced by the hormones under lower pH. In the present study, we isolated several clones which potentiate neurite outgrowth by PACAP in acidic pH (6.8), but not in alkaline pH (7.6). RT-PCR and electrophysiology data indicate that these clones express only functional $P2X_2$ receptors in the absence or presence of PACAP for 3 days. Potentiation of neurite outgrowth resulted from PACAP (100 nM) in acidic pH is inhibited by the two P2X receptor antagonists, suramin and PPADS ($100\;{\mu}M)$ each), and exogenous exprerssion of ATP-binding mutant $P2X_2$ receptor subunit ($P2X_2[K69A]$). However, acid sensing ion channels (ASICs) are not involved in PACAP-induced neurite outgrowth potentiation in lower pH since treatments of an inhibitor of ASICs, amyloride ($10\;{\mu}M$), did not give any effects to neurite extension. The vesicular proton pump ($H^+-ATPase$) inhibitor, bafilomycin (100 nM), reduced neurite extension indicating that ATP release resulted from $P2X_2$ receptor activation in PC12 cells is needed for neurite outgrowth. These were confirmed by activation of mitogen activated protein kinases, such as ERKs and p38. These results suggest roles of ATP and $P2X_2$ receptors in hormone-induced cell differentiation or neuronal synaptogenesis in local acidic environments.

  • PDF