• Title/Summary/Keyword: PA12(Polyamide12)

Search Result 26, Processing Time 0.019 seconds

Preparation of EPDM/Polyamide12 Elastomers through Electron Beam Irradiation (전자선 조사를 통한 EPDM/Polyamide12 탄성체의 제조에 관한 연구)

  • Jung, Hyo Shin;Park, Jung Il;Kang, Phil-Hyun;Choi, Myung Chan;Chang, Young-Wook;Hong, Sung Chul
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.571-578
    • /
    • 2013
  • Polyamide12 (PA12) is blended with ethylene propylene diene rubber (EPDM) at various compositions in the presence of maleated EPDM (mEPDM) to afford blend materials having the characteristics of thermoplastic elastomer (TPE). The EPDM/PA12 melt-blends are further irradiated with electron-beam (e-beam) at 0~100 kGy dosage, yielding selective crosslinking between EPDM chains while retaining melt-processibility originated from PA12 phase. mEPDM acts as a compatibilizer and affords additional improvements in mechanical properties of the EPDM/PA12 blend. With 25 kGy of e-beam irradiation and mEPDM, the EPDM/PA12 blends successfully exhibit TPE behaviors with reasonable elastomeric and mechanical properties.

Study on Impact Properties of Polyamide 12 depending on Temperature by Selective Laser Sintering Process (선택적 레이저 소결 공정 적용 폴리아미드 12의 온도별 충격 특성에 관한 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.136-142
    • /
    • 2018
  • Additive manufacturing process technology, known as the 3D printing process, is expanding its utilization from simple model realization to commercialized part production based on continuous material development. Recently, research and development have been actively carried out to fabricate lightweight and high-strength parts using polymers, such as polyamide (polyamide), which is a high-strength engineering plastic material. In this study, the Izod impact characteristics were analyzed for polyamide 12 (PA12) materials. For the specimen production, selective laser sintering process technology, which has excellent mechanical properties of finished products, was applied. In addition, PA12 and glass bead reinforced PA12 materials were produced. The specimens were classified according to the production direction on the production platform, and each specimen was subjected to an Izod test at test temperatures of $-25^{\circ}C$, $25^{\circ}C$, and $60^{\circ}C$. As a result, the impact strength of PA12 and glass bead-reinforced PA12 of vertical direction specimens were 48.8% and 16.3% lower than those of the parallel specimens at a $25^{\circ}C$ test temperature and the impact strength of parallel specimens was improved by 46.5% and 20.4% at a test temperature of $60^{\circ}C$ compared to that at $-25^{\circ}C$.

Characterization of Poly(ether-block-amide)s Prepared from Oligomeric Polyamide 12 via Dispersion Polymerization (분산중합에 의한 폴리아미드 12 올리고머의 제조와 그를 이용한 Poly(ether-block-amide)의 특성)

  • Kim, Doo-Hyeon;Lee, Ji-Hun;Kim, Hyung-Joong
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.513-518
    • /
    • 2012
  • Polyamide 12 (PA12) oligomers (oPA1) were prepared by dispersion polymerization of ${\omega}$-amino carboxylic acid and dibasic acid in a dispersion medium, thermally stable hydrocarbon liquid paraffin, YK-D130 (a step polymerization). The molecular weight and various properties of other oligomeric PAs (oPA2) obtained by bulk polymerization without the medium were compared with those of oPA1s. The oPA1s showed lighter white color and narrower molecular weight distribution than oPA2s at the same molecular weight. Moreover elastomeric poly(ether-block-amide) (PEBA)s were synthesized with oPA1 and oPA2 as hard segments and poly(tetramethylene glycol) (PTMG) as a soft segment. The molecular weight distribution, and mechanical property of the PEBA originated from the both oligomeric PAs were characterized.

Study on Flexural Properties of Polyamide 12 according to Temperature produced by Selective Laser Sintering (선택적 레이저 소결 제작 폴리아미드 12 시편의 온도별 굴곡 특성 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.319-325
    • /
    • 2018
  • The use of 3D printing (Additive Manufacturing) technology has expanded from initial model production to the mass production of parts in the industrial field based on the continuous research and development of materials and process technology. As a representative polymer material for 3D printing, the polyamide-based material, which is one of the high-strength engineering plastics, is used mainly for manufacturing parts for automobiles because of its light weight and durability. In this study, the specimens were fabricated using Selective Laser Sintering, which has excellent mechanical properties, and the flexural characteristics were analyzed according to the temperature of the two types of polyamide 12 and glass bead reinforced PA12 materials. The test specimens were prepared in the directions of $0^{\circ}$, $45^{\circ}$, and $90^{\circ}$ based on the work platform, and then subjected to a flexural test in three test temperature environments of $-25^{\circ}C$, $25^{\circ}C$, and $60^{\circ}C$. As a result, PA12 had the maximum flexural strength in the direction of $90^{\circ}$ at $-25^{\circ}C$ and $0^{\circ}$ at $25^{\circ}C$ and $60^{\circ}C$. The glass bead-reinforced PA12 exhibited maximum flexural strength values at all test temperatures in the $0^{\circ}$ fabrication direction. The tendency of the flexural strength changes of the two materials was different due to the influence of the plane direction of the lamination layer depending on the type of stress generated in the bending test.

Study on Tensile Properties of Polyamide 12 produced by Laser-based Additive Manufacturing Process (레이저 적층제조기술로 제작한 폴리아미드 12 시편의 인장특성 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.217-223
    • /
    • 2019
  • The application of 3D printing technology is expanding due to the production of the complex-shape parts and the one-step manufacturing process. Moreover, various technical solutions in 3D printing are emerging through continuous research and development. Representative technologies include SLS technology, in which a desired area is sintered and laminated by irradiating a powder-type material with a laser. In addition, high-performance engineering plastic parts are being manufactured in increasing numbers. In this study, tensile specimens were fabricated from polyamide 12, a widely available polymer, and the glass bead-reinforced polyamide 12. The specimen-build orientation was divided into 0°, 45°, and 90° on the fabrication platform, and the tensile test temperature was -25℃, 25℃, and 60℃. The test results showed that the tensile modulus of both materials decreases as the build orientation becomes closer to 90°. In addition, the tensile strength of glass bead-reinforced PA12 showed more dependence on the build orientation than PA12. In addition, the tensile modulus and tensile strength decreased with increasing test temperature.

A Study on the Compatibility of Polycarbonate/Polyamide 6 Blends (Polycarbonate/Polyamide 6 블랜드의 상용성에 관한 연구)

  • Park, Tae-Wook;Lee, Chi-Giu;Haw, Jung-Rim
    • Applied Chemistry for Engineering
    • /
    • v.4 no.3
    • /
    • pp.601-615
    • /
    • 1993
  • A series of polycarbonate(PC)/polyamide 6(PA6) blends were prepared by three different blending methods to investigate their compatibility. From the DSC results, all of these blends have two Tg's in their own Tg regions, and there was no significant depression of the melting point and the crystallization temperature of PA6. With respect to the microstructure of the blends by SEM, the phase separation occurred at very low blend compositions, PC/PA6=95/5 and 5/95, already. In addition, a method is proposed to determine the Flory-Huggins polymer-polymer interaction parameter(${\chi}_{12}$) in polymer blend systems by using the experimentally determined Tg's. The values of ${\chi}_{12}$ obtained were 0.0381, 0.0411, 0.0418, for solution casting, solution precipitation, and extrusion blending methods, respectively. These values were higher than the critical value of ${\chi}_{12}$,($({\chi}_{12})_c$, 0.0271). Therefore it was concluded that the PC/PA6 blend system have little compatibility.

  • PDF

A Study on the Post Deformation According to an Environmental Temperature of the Plastic Fuel Tube for Automobile (자동차용 플라스틱 연료튜브의 환경온도에 따른 후변형에 관한 연구)

  • Park, J.S.;Moon, C.Y.;Jeong, Y.D.
    • Journal of Power System Engineering
    • /
    • v.7 no.2
    • /
    • pp.56-60
    • /
    • 2003
  • Recently the plastic fuel tube is usually used to reduce production cost and weight in automobiles. These days, material used to plastic fuel tube is the polyamide12. The fuel tube is made of the PA12. Post deformation of the tube has been changed by environmental temperature. So, it is important to prevent post deformation. The experiment is performed to investigate post deformation of the tube produced by each bending process. In this study, the results we obtained are used to bending process system for post deformation as the environmental temperature of the tube. It turned out that the method of steam heating and air cooling was shown less deformation than other methods.

  • PDF

Synthesis and Characterization of Thermoplastic Elastomer Poly(ether-b-amide) Containing Aromatic Moiety (방향족 구조가 포함된 열가소성 탄성체 Poly(ether-b-amide)의 합성 및 특성)

  • Lee, Ji Hun;Kim, Hyung Joong
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.596-601
    • /
    • 2014
  • Polyamide (PA) oligomers, which are the hard segment of poly(ether-block-amide) (PEBA), presenting thermoplastic and high performance elastomeric properties were prepared by polycondensation between 4-aminobenzoic acid and 12-aminododecanoic acid. Subsequently PEBAs were obtained by addition polymerization of the PA oligomers and various molecular weights of poly(tetramethylene glycol) (PTMG). The structure of the final PEBA was identified by using FTIR and $^1H$ NMR and the thermal properties depending on changes in the structure of hard segment were collected by using DSC and UTM analysis. As the results, the melt temperature ($T_m$), the initial modulus, and the maximum strength of PEBAs increased with an increase in aromatic moiety up to 30% without reducing crystallinity.

Nanofiltration of Dye Solutions Through Polyamide Composite Membranes

  • Jonggeon Jegal;Baek, Kyung-Sook;Lee, Kew-Ho
    • Korean Membrane Journal
    • /
    • v.4 no.1
    • /
    • pp.12-19
    • /
    • 2002
  • Nanofiltration of aqueous dye solutions was carried out using polyamide (PA) nanofiltration (NF) composite membranes. The PA composite membranes were prepared by the interfacial polymerization of piperazine (PIP) and trimesoyl chloride (TMC) on the surface of microporous polysulfone (PSf) ultrafi1tration (UF) membranes. After characterization in terms of their permeation performance and surface ionic property, they were used for the separation of dye solutions such as Direct Red 75, 80, 81, and Direct Yellow 8 and 27. The separation conditions were varied to study the factors affecting on the permeation performance of the membranes: different concentrations of dye solutions, operating temperature and time, and flow rate of a feed solution. The surface property of the membrane, especially its ionic property, as a function of operating time was examined with a zeta-potentiometer and the relationship between the surface chemistry of the membrane and its permeation properties was also studied.

Spring Back on the Compound Bending of the Plastic Fuel Tube for Automobile (자동차용 플라스틱 연료튜브의 복합 벤딩에 대한 스프링백)

  • Moon, C.Y.;Park, J.S.;Jeong, Y.D.
    • Journal of Power System Engineering
    • /
    • v.7 no.2
    • /
    • pp.51-55
    • /
    • 2003
  • Recently the requirements for light weight and high performance of the automobile have increased. Especially, the plastic fuel tube makers have made their efforts to dove]op the various plastic fuel tube module with not only dimensional accuracy but also cost competitiveness. The experiment is performed to investigate spring backs for PA12 plastic fuel tubes in case of compound bending. In the experiment, steam bending process is adopted as bending method. In this study, the results we obtained are used to design the bending fixtures and the compound bending system.

  • PDF