• Title/Summary/Keyword: P450 inhibition

Search Result 158, Processing Time 0.027 seconds

Chemical Components and Physiological Activities of Young Mulberry(Morus alba) Stem (뽕나무 어린줄기의 화학성분 및 생리활성)

  • 정창호;주옥수;심기환
    • Food Science and Preservation
    • /
    • v.9 no.2
    • /
    • pp.228-233
    • /
    • 2002
  • In order to exploit as a new functional decocted beverage, chemical components, antioxidative and antimicrobial activities young stems of mulberry(Morus alba) were surveyed. The proximate composition was composed of crude fiber 51.12%, ash 13.46%, total sugar 10.38%, crude fat 9.10% and crude protein 5.01%. The P(295.9 mg%) was the highest mineral found in young stem of mulberry and Ca 289.6 mg%, K 209.6 mg%, Na 58.3 mg%, Mg 45.0 mg% and Fe 4.6 mg% in that order. Free sugars was composed of glucose 1.08%, galactose 022%, sucrose 0.20% and fructose 0.16%. Eight fatty acids in stem of mulberry were identified and the major fatty acids were linoleic acid(46.10%), palmitic acid(27.84%) and linolenic acid(10.85%). Among the 17 amino acids detected, total amino acid was 2,450.5 mg% and proline(313.7 mg%) was the most predominant. Methanol extract and ethyl acetate fraction showed stronger activity of the hydrogen donating activities, each of 77.24% and 80.08%, respectively. The methanol extract from young stem of mulberry showed the strongest antimicrobial activities to Bacillus subtitis and Bacitus cereus. Chloroform and ethyl acetate fractions from methanol extract of young stem showed a inhibition zone of 9.0∼19.0 ㎜ in diameter against pathogen bacteria.

EFFECT OF PHENOBARBITAL AND / OR SKF 525-A ON THE METABOLISM AND ACUTE TOXICITY OF PARATHION IN ADULT FEMALE PATS (자성 흰쥐의 파라치온 급성독성 및 대사에 미치는 페노바르비탈 및 SKF-525-A의 영향)

  • Choi, Jae-Hwa;Yim, Hye-Kyung;Kim, Young-Chul
    • Toxicological Research
    • /
    • v.6 no.1
    • /
    • pp.51-59
    • /
    • 1990
  • Effects of altering hepatic mixed-function oxidase (MFO) enzyme activities on the metabolism and acute toxicity of parathio were investigated in adult female rats. In vitro hepatic metabolism of parathion to paraoxon was increased by phenobarbital pretreatment (50 mg/kg/day, ip, for 4 consecutive days) and SKF 525-A (50 mg/kg, ip, 1 hr prior to sacrifice) decreased paraoxon formation indicating that phenobarbital induces that form(s) of cytochrome P-450 catalyzing conversion of parathion to paraoxon. Degradation of paraoxon to p-nitrophenol was increased by phenobarbital pretreatment, but not affected by SKF 525-A suggesting that MFO activities play only a minor role in the detoxification of the active metabolite of this insecticide. The phenobarbital-induced increase in paraoxon formation was partially antagonized by SKF 525-A. Significant activity for both parathion activation and paraoxon degradation was also observed in the lung preparation, however, this extrahepatic parathion and paraoxon metabolizing activity was not induced by phenobarbital or inhibited by SKF 525-A pretreatment. Phenobarbital pretreatment increased paraoxon level in livers of rats when measured 3 hr following parathion injection (2 mg/kg, ip). SKF 525-A did not alter parathion or paraoxon levels in brain, blood and liver. Phenobarbital pretreatment decreased the toxicity of parathion (4mg/kg, ip) or paraoxon (1.5 mg/kg, ip) as determined by decreases in lethality and inhibition of brain and lung acetylcholinesterases. An additional SKF 525-A treatment failed to decrease the protective effects of phenobarbital against parathion or paraoxon toxicity. These results suggest that some unknown factors other than hepatic MFO induction are involved in the protective action of phenobarbital against parathion and paraoxon toxicity.

  • PDF

Action Mechanism of LB10522, a New Catechol-Substituted Cephalosporin (카테콜 치환체를 가진 세파로스포린계 항생제 LB10522의 작용기전)

  • Kim, Mu-Yong;Oh, Jeong-In;Paek, Kyoung-Sook;Kim, In-Chull;Kwak, Jin-Hwan
    • YAKHAK HOEJI
    • /
    • v.40 no.1
    • /
    • pp.102-111
    • /
    • 1996
  • LB10522 is a new parenteral broad spectrum cephalosporin with a catechol moiety at C-7 position of beta-lactam ring. This compound can utilize tonB-dependent iron transp ort system in addition to porin proteins to enter bacterial periplasmic space and access to penicillin-binding proteins (PBPs) which are the lethal targets of ${\beta}$-lactam antibiotics. The chelating activity of LB10522 to metal iron was measured by spectrophotometrically scanning the absorbance from 200 to 900nm. When $FeCl_3$ was added, optical density was increased between 450 and 800nm. LB10522 was more active against gram-negative strains in iron-depleted media than in iron-replete media. This is due to the increased expression of iron transport channels in iron-depleted condition. LB10522 showed a similar activity against E. coli DC2 (permeability mutant) and E. coli DCO (wild type strain) in both iron-depleted and iron-replete media, indicating a minimal permeaility barrier for LB10522 uptake. LB10522 had high affinities to PBP 3 and PBP 1A, 1B of E. coli. By blocking these proteins, LB10522 caused inhibition of cell division and the eventual death of cells. This result was correlated well with the morphological changes in E. coli exposed to LB10522. Although the in vitro MIC of LB10522 against P. aeruginosa 1912E mutant (tonB) was 8-times higher than that of the P. aeruginosa 1912E parent strain, LB10522 showed a similar in vivo protection efficacy against both strains in the mouse systemic infection model. This result suggested that tonB mutant, which requires a high level of iron for normal growth, might have a difficulty in surviving in their host with an iron-limited environment.

  • PDF

Effects of Organotin Compounds on Follicular Steroidogenesis in Frogs

  • Kwon, Hyuk-Bang;Kim, Seung-Chang;Kim, An-Na;Lee, Sung-Ho;Ahn, Ryun-Sup
    • Development and Reproduction
    • /
    • v.13 no.3
    • /
    • pp.163-172
    • /
    • 2009
  • Some organotin compounds such as butyltins and phenyltins are known to induce impo-sex in various marine animals and are considered to be endocrine disruptors. In this study, the effect of organotins on follicular steroidogenesis in amphibians was examined using ovarian follicles of Rana dybowskii and Rana catesbeiana. Isolated follicles were cultured for 6 or 18 h in the presence and absence of frog pituitary homogenate (FPH) or various steroid precursors, and the levels of product steroids in the culture media oassay. Among the butyltin compounds, tributyltin (TBT) strongly and dose-dependently inhibited the FPH-induced synthesis of pregnenolone ($P_5$) and progesterone ($P_4$) by the follicles. TBT also strongly suppressed the conversion of cholesterol to $P_5$ and partially suppressed the conversion of $P_5$ to $P_4$. A high concentration of dibutyltin (DBT) also inhibited steroidogenesis by the follicles while monobutyltin and tetrabutyltin had negligible effects. The toxic effect of TBT or DBT was irreversible and a short time of exposure (30 min) was enough to suppress steroidogenesis. All the phenyltin compounds significantly inhibited FPH-induced $P_5$ synthesis by the follicles. The effective dose of 50% inhibition by diphenyltin was $0.04\;{\mu}M$ and those of monophenyltin and triphenyltin were $0.24\;{\mu}M$ and $0.3\;{\mu}M$, respectively. However, none of the phenyltin compounds significantly suppressed the conversion of $P_4$ to $17{\alpha}$-hydroxyprogesterone ($17{\alpha}$-OHP) (by $17{\alpha}$-hydroxylase), $17{\alpha}$-OHP to androstenedione (AD) (by $C_{17-20}$ lyase), or AD to testosterone by the follicles. Taken together, the data show that among the steroidogenic enzymes, P450scc in the follicles is the most sensitive to organotin compounds and that an amphibian follicle culture system can be a useful screening model for endocrine disruptors.

  • PDF

Effect of Mixed Application of Cinosulfuron with Dymron on Rice (Cinosulfuron과 Dymron의 혼합처리(混合處理)가 수도(水稻)(Oryza sativa L.)의 초기생육(初期生育)에 미치는 영향(影響))

  • Choi, Y.S.;Kim, K.U.;Shin, D.H.
    • Korean Journal of Weed Science
    • /
    • v.12 no.2
    • /
    • pp.110-123
    • /
    • 1992
  • To investigate the safening effect of dymron against cinosulfuron, the responses of 104 rice cultivars and lines to single and mixture treatments of cinosulfuron [3-(4.6-dimethoxy-1,3,5-triazin-2-yl)-1-[2-(2-methoxyethoxy)-phenylsulfonyl]-urea] and dymron [1-(${\alpha}$, ${\alpha}$-dimethylbenzyl)-3-p-tolyl urea] were evaluated. The responses of 104 rice cultivars and lines to cinosulfuron were differed. Among the rice cultivars, growth of Calrose, Dasukei, Hwajinhyeo, and Milyang 105 was significantly inhibited by cinosulfuron but there was no inhibition in Daeseongbyeo, Iri 371, Jangseongbyeo, Taebaegbyeo and IR 74. The japonica types were generally inhibited more than the indica and indica${\times}$japonica types. When Kwangmyungbyeo was treated with the mixtures of cinosulfuron 48g and 96g ai/ha with dymron 450g ai/ha, the inhibition of plant height was significantly reduced regardless of dymron concentrations. With increase in cinosulfuron concentration, the safening effect of dymron against cinosulfuron was more evident in plant height than fresh weight. On the other hand, dymron did not have any safening effects of cinosulfuron on Echinochloa crus-galli at any concentrations. The mixtures of dymron and cinosulfuron produced antagonistic effects on the plant height regardless of rice cultivars and treatment concentrations. At cinosulfuron 24g ai/ha, the effects of the mixtures of cinosulfuron and brassinolide on the plant height of Kwangmyungbyeo and IR 74 were similar irrespective of brassinolide concentrations but the inhibition of Kwangmyungbyeo was greater than that of IR 74 as the concentrations of cinosulfuron increased. The effects of the mixtures of cinosulfuron at concentration of 96g ai/ha with various ABA levels on the plant height of both Kwangmyungbyeo and IR 74 showed synergistic effect regardless of ABA concentration. However, the response of fresh weight of both cultivars treated with cinosulfuron at 96g ai/ha with ABA synergisism was observed in Kwangyungbyeo while IR 74 showed antagonism.

  • PDF

Effect of Riboflavin Tetrabutylate on the Activity of Drug Metabolizing Enzyme and Lipid Peroxidation in Liver Microsomes of Rats (Riboflavin Tetrabutylate가 약물대사 효소 및 지질 과산화효소에 미치는 영향)

  • Lee, H.W.;Kim, W.J.;Hong, S.S.;Kwack, C.Y.;Hong, S.U.
    • The Korean Journal of Pharmacology
    • /
    • v.16 no.2 s.27
    • /
    • pp.45-53
    • /
    • 1980
  • Lipid peroxidation in vitro has been identified as a basic deteriorative reaction in cellular mechanism of aging processes, such as air pollution oxidant damage to cell and to the lung, chlorinated hydrocarbon hepatotoxicity. Many experimental evidences were reported by several investigators that lipid peroxidation could be one of the principle causes for the hepatotoxicity produced by $CCl_4$. It is now reasonably established that $CCl_4$ is activated to a free radical in vivo, that lipid peroxidation occurs very quickly in microsomes prepared from damaged livers, that the peroxidation is associated with loss of enzyme activity of microsomes, and that various antioxidants can protect animals against the hepatotoxic effect of $CCl_4$. Recent studies have drawn attention to some other feature of microsomal lipid peroxidation. Incubation of liver microsomes in the presence of NADPH has led to a loss of cytochrome $P_{450}$. However, the presence of an antioxidant prevented lipid peroxidation and preserved cytochrome $P_{450}$. Decrease of cytochrome $P_{450}$ in microsomes under in vitro incubation can be enhanced by $CCl_4 and these changes were parallel to a loss of microsomal polyunsaturated fatty acid and formation of malonaldehyde. The primary purpose of this experiment was to study the effect of riboflavin tetrabutylate on lipid peroxidation, specially, the relationship between lipid peroxidation and drug metabolizing enzyme system which is located in smooth endoplasmic recticulum as well as the effect of ritoflavin tetrabutylate on drug metabolizing enzyme system of animal treated with $CCl_4$. Albino rats were used for experimental animal. In order to induce drug metabolizing enzyme system, phenobarbital was injected intraperitoneally. $CCl_$ and riboflavin tetrabutylate were given intraperitoneally as solution in olive oil. Microsomal fraction was isolated from liver of animals and TBA value as well as the activity of drug metabolizing enzyme were measured in the microsomal fractions. The results are summerized as following. 1) The secobarbital induced sleeping time of $CCl_4$ treated rat was about 2 times longer than that of the control group. However, the pretreatment with riboflavin tetrabutylate inhibited completely the lengthened sleeping time due to $CCl_4$ treatment. Furthermore TBA value was significantly increased in $CCl_4$ treated rat in comparison to control group tut the increase of TBA value was prevented by the pretreatment with riboflavin tetrabutylate. On the other hand, the activity of hepatic drug metabolizing enzyme was decreased in $CCl_4$ group, however, the pretreatment with riboflavin tetrabutylate also prevented the decrease of the enzyme activity caused by $CCl_4$. 2) The effect of riboflavin tetrabutylate on TBA value and the activity of drug metabolizing enzyme in vitro was similar to in vivo results. Incubation of liver microsome from rat in the presence of $CCl_4$, $Fe^{++}$, or ascorbic acid has led to the marked increase of TBA value, however, the addition of riboflavin tetrabutylate in incubation mixture prevented significantly the increase of TBA value, suggesting the inhibition of lipid peroxidation. In accordance with TBA value, the activity of drug metabolizing enzyme was inhibited in the presence of $CCl_4$, $Fe^{++}$, ascorbic acid but the addition of riboflavin tetrabutylate protected the loss of the enzyme activity in microsome under in vitro incubation.

  • PDF

Angiotensin-I Converting Enzyme Inhibitory Activity of Enzymatic Hydrolysates of Mackerel Muscle Protein (효소에 의한 고등어 근육단백질 가수분해물의 Angiotensin-I 전환효소 저해작용)

  • YEUM Dong-Min;LEE Tae-Gee;BYUN Han-Seok;KIM Seon-Bong;PARK Yeung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.3
    • /
    • pp.229-235
    • /
    • 1992
  • Fish protein hydrolysates(FPH) prepared from defatted mackerel meal by proteases such as complex enzymes, bromelain, alcalase, $\alpha-chymotrypsin,$ trypsin, papain and pepsin were tested for inhibitory activity against angiotensin-I converting enzyme(ACE). Among proteases tested, the hydrolysates obtained from the treatment of complex enzymes or bromelain showed relatively higher activity. ACE inhibitory activity of the hydrolysates increased until hydrolysis of 8 hrs, and was stable by heat treatment for 20min at $100^{\circ}C.$ From the profiles of fractionation of the hydrolysates with Bio-gel P-2, the most active fraction had about MW 1,450 and it's amino acid was abundant in Asp, Glu, Lys, Leu, Val and Ala. $IC_{50}\;(amounts\;of\;inhibitors\;needed\;for\;50\%\;inhibition)$ of the active fraction of the hydrolysates obtained from the treatment of complex enzyme and bromelain was 90 and $130 {\mu}g,$ respectively.

  • PDF

The responsibility of C-terminal domain in the thermolabile haemolysin activity of Vibrio parahaemolyticus and inhibition treatments by Phellinus sp. extracts

  • Tran Thi Huyen;Ha Phuong Trang;Nguyen Thi-Ngan;Bui Dinh-Thanh;Le Pham Tan Quoc;Trinh Ngoc Nam
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.3
    • /
    • pp.204-215
    • /
    • 2023
  • The thermolabile haemolysin (tlh) of Vibrio parahaemolyticus (Vptlh) from V. parahaemolyticus is a multiple-function enzyme, initially describes as a haemolytic factor activated by lecithin and phospholipase A2 enzymatic activity (Shinoda, 1991; Vazquez-Morado, 2021; Yanagase et al., 1970). Until now, the tlh structure has hypothesized including N-terminal and C-terminal domain, but what domain of the Vptlh structure does the haemolytic activity has not been refined yet. In this study, a 450-bp VpTLH nucleotide sequence of the entire Vptlh gene encoded the C-terminal domain cloned firstly to examine its responsibility in the activity of the Vptlh. The C-terminal domain fused with a 6-His-tag named the His-tag-VpC-terminal domain was expressed successfully in soluble form in the BL21 (DE3) PlysS cell. Remarkably, both expression and purification results confirmed a high agreement in the molecular weight of the His-tag-VpC-terminal domain was 47 kDa. This work showed the His-tag-VpC-terminal domain lysed the erythrocyte membranes in the blood agar and the phosphate buffered saline (0.9%) media without adding the lecithin substrate of the phospholipase enzyme. Haemolysis occurred at all tested diluted concentrations of His-tag-VpC-terminal domain (p < 0.05), providing evidence for the independent haemolytic activity of the His-tag-VpC-terminal domain. The content of 100 ㎍ of the His-tag-VpC-terminal domain brought the highest haemolytic activity of 80% compared to that in the three remaining contents. Significantly, the His-tag-VpC-terminal domain demonstrated not to involve the phospholipase activity in Luria-Bertani agar supplemented with 1% (vol/vol) egg yolk emulsion. All results proved the vital responsibility of the His-tag-VpC-terminal domain in causing the haemolytic activity without the required activation by the phospholipase enzyme. Raw extracts of Phellinus igniarus and Phellinus pipi at 10-1 mg/mL inhibited the haemolytic activity of the His-tag-VpC-terminal domain from 67.7% to 87.42%, respectively. Hence applying the His-tag-VpC-terminal domain as a simple biological material to evaluate quickly potential derivatives against the Vptlh in vivo conditions will accessible and more advantageous than using the whole of the Vptlh.

Trichostatin A, a Histone Deacetylase Inhibitor Stimulate CYP3A4 Proximal Promoter Activity in Hepa-I Cells

  • Ahn Mee Ryung;Kim Dae-Kee;Sheen Yhun Yhong
    • Archives of Pharmacal Research
    • /
    • v.27 no.4
    • /
    • pp.415-421
    • /
    • 2004
  • Cytochrome P450 3A4 (CYP3A4) is the most abundant CYPs in human liver, comprising approximately $30\%$ of the total liver CYPs contents and is involved in the metabolism of more than $60\%$ of currently used therapeutic drugs. However, the molecular mechanisms underly-ing regulation of CYP3A4 gene expression have not been understood. Thus, this study has been carried out to gain the insight of the molecular mechanism of CYP3A4 gene expression, investigating if the histone deacetylation is involved in the regulation of CYP3A4 gene expression by proximal promoter. Also SXR was investigated to see if they were involved in the regulation of CYP3A4 proximal promoter activity. Hepa-1 cells were transfected with a plasmid containing ${\~}1kb$ of the human CYP3A4 proximal promoter region (863 to +64 bp) cloned in front of a reporter gene, luciferase, in the presence or absence of SXR. Transfected cells were treated with CYP3A4 inducers such as rifampicin, PCN and RU 486, in order to examine the regulation of CYP3A4 gene expression in the presence or absence of trichostatin A (TSA). In Hepa-1 cells, CYP3A4 inducers increased modestly the luciferase activity when TSA was co-treated, but this increment was not enhanced by SXR cotransfection. Taken together, these results indicated that the inhibition of histone deacetylation was required to SXR-mediated increase in CYP3A4 proximal promoter region when rifampicin, or PCN was treated. Further a trans-activation by SXR may demand other species-specific transcription factors.

Assessment of Biomarkers in Acetaminophen-Induced Hepatic Toxicity by siRNA

  • Kang, Jin-Seok;Yum, Young-Na;Kim, Joo-Hwan;Park, Sue-Nie
    • Biomolecules & Therapeutics
    • /
    • v.17 no.4
    • /
    • pp.438-445
    • /
    • 2009
  • We investigated global gene expression from both mouse liver and mouse hepatic cell lines treated with acetaminophen (APAP) in order to compare in vivo and in vitro profiles and to assess the feasibility of the two systems. During our analyses of gene expression profiles, we picked up several down-regulated genes, such as the cytochrome P450 family 51 (Cyp51), sulfotransferase family cytosolic 1C member 2 (Sult1c2), 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (Hmgcs1), and several genes that were up-regulated by APAP, such as growth arrest and DNA-damage-inducible 45 alpha (Gadd45a), transformation related protein 53 inducible nuclear protein 1 (Trp53inp1) and zinc finger protein 688 (Zfp688). For validation of gene function, synthesized short interfering RNAs (siRNAs) for these genes were transfected in a mouse hepatic cell line, BNL CL.2, for investigation of cell viability and mRNA expression level. We found that siRNA transfection of these genes induced down-regulation of respective mRNA expression and decreased cell viability. siRNA transfection for Cyp51 and others induced morphological alterations, such as membrane thickening and nuclear condensation. Taken together, siRNA transfection of these six genes decreased cell viability and induced alteration in cellular morphology, along with effective inhibition of respective mRNA, suggesting that these genes could be associated with APAP-induced toxicity. Furthermore, these genes may be used in the investigation of hepatotoxicity, for better understanding of its mechanism.