• Title/Summary/Keyword: P.E.B(Pre-Engineering Buildings) 시스템

Search Result 2, Processing Time 0.018 seconds

Structural Performance of H-shaped Column-Rafter Connection in the P.E.B Systematic Steel Frames (P.E.B 시스템 강골조에서 H형강 기둥 - Rafter 접합부의 구조성능)

  • Kim, Jong Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.347-356
    • /
    • 2005
  • Recently, pre-engineering building (P.E.B.) systematic frames are increasingly being used in steel factory buildings, but almost of the related techniques are dependent on the engineering program (e.g, MBS, LTI), which is usually imported from other countries. These are designed under the AISC-ASD because at present there is no Korean design code for P.E.B. frames. Also, there are few studies onbehaviour and we need to develop the element techniques by using H-shaped components.In particular, there is a tendency towards overestimated design because column-rafter connections have been designed with extended end plate type joint, which is treated asrigid joint,so structural examinations are needed. Therefore, this study represents a basic step in ascertaining the application of P.E.B. systematic frames by using H-shaped column-rafter connectionwith flush type end plate. Its structural performance is compared with that of existing extended type joint using a structural performance test. The structural behaviour of specimen was understood qualitatively and the possibility of application (e.g, design aid charts) of semi-connection (flush type) with H-shaped column-rafter was determined.

An Analytical Evaluation on Buckling Resistance of Tapered H-Section Deep Beam (춤이 큰 웨브 변단면 H형 보의 휨내력에 대한 해석적 평가)

  • Lee, Seong Hui;Shim, Hyun Ju;Lee, Eun Taik;Hong, Soon Jo;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.493-501
    • /
    • 2007
  • Recently, in the domestic amount of materials,curtailment and economic efficiency security by purpose, tapered beam application is achieved, but the architectural design technology of today based on the material non-linear method does not consider solutions to problems such as brittle fracture. So, geometric non-linear evaluation thatincludes initial deformation, width-thickness ratio, web stiffener and unbraced length is required. Therefore, in this study, we used ANSYS, a proven finite elementanalysis program,and material and geometric non-linear analysis to study existing and completed tapered H-section as deep beam's analysis model. Main parameters include the width-thickness ratio of web, stiffener, and flange brace, with the experimental result obtained by main variable buckling and limit strength evaluation. We made certain that a large width-thickness ratio of the web decreases the buckling strength and short unbraced web significantly improves ductility.