• Title/Summary/Keyword: P.E.B(Pre-Engineered Building) System

Search Result 2, Processing Time 0.023 seconds

Ultimate strength of long-span buildings with P.E.B (Pre-Engineered Building) system

  • Lee, Seong-Hui;Kim, Young-Ho;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1483-1499
    • /
    • 2015
  • With the improvement of the quality of construction materials and the development of construction technologies, large-scale long-span steel frame buildings have been built recently. The P.E.B system using tapered members is being employed as an economically-efficient long-span structure owing to its advantage of being able to distribute stress appropriately depending on the size of sectional areas of members. However, in December 2005 and in February 2014, P.E.B buildings collapsed due to sudden loads such as snow loads and wind gusts. In this study, the design and construction of the P.E.B system in Korea were analyzed and its structural safety was evaluated using the finite element analysis program to suggest how to improve the P.E.B system in order to promote the efficient and rational application of the system.

An Analytical Evaluation on Buckling Resistance of Tapered H-Section Deep Beam (춤이 큰 웨브 변단면 H형 보의 휨내력에 대한 해석적 평가)

  • Lee, Seong Hui;Shim, Hyun Ju;Lee, Eun Taik;Hong, Soon Jo;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.493-501
    • /
    • 2007
  • Recently, in the domestic amount of materials,curtailment and economic efficiency security by purpose, tapered beam application is achieved, but the architectural design technology of today based on the material non-linear method does not consider solutions to problems such as brittle fracture. So, geometric non-linear evaluation thatincludes initial deformation, width-thickness ratio, web stiffener and unbraced length is required. Therefore, in this study, we used ANSYS, a proven finite elementanalysis program,and material and geometric non-linear analysis to study existing and completed tapered H-section as deep beam's analysis model. Main parameters include the width-thickness ratio of web, stiffener, and flange brace, with the experimental result obtained by main variable buckling and limit strength evaluation. We made certain that a large width-thickness ratio of the web decreases the buckling strength and short unbraced web significantly improves ductility.