• Title/Summary/Keyword: P.E 필름

Search Result 69, Processing Time 0.037 seconds

Effect of Mulching Material on the Growth and Quality of Oriental Melon (Cucumis melo L. var. makuwa Mak.) in Protected Cultivation (멀칭재료가 시설참외의 생육과 품질에 미치는 영향)

  • Su Gon Bae;Yong Seub Shin;Il Kweon Yeon;Han Woo Do
    • Journal of Bio-Environment Control
    • /
    • v.10 no.4
    • /
    • pp.237-243
    • /
    • 2001
  • The experiment was conducted to investigate the effect of different mulching materials on the growth and quality of oriental melon in protected cultivation. Soil temperature, plant growth and fruit quality were affected by different mulching materials, clear polyethylene (P.E.) film (control), clear inset between black P.E. film, green P.E. film. and recycled ethylene vinyl acetate (E.V.A.) film. The highest night soil temperature was at 20 cm depth under green P.E. film, but was at 5 cm depth under other materials. Difference of soil temperature as affected by mulching materials decreased with increasing soil depth. Plant height, number of nodes, leaf area index (LAI), crop growth rate (CGR), and relative growth rate (RGR) at 30 days after transplanting were significantly greater in the recycled E.V.A. film treatment than in the other treatments. Fresh weight of weeds growth under the mulching materials was not affected by mulching material at 30 days after transplanting. However, it was the greatest under clear P.E. film mulching at 90 days after transplanting. Harvesting time of recycled E.V.A. film was 2 days earlier than that of clear P.E. film. Difference in fruit weight and length, and soluble solid content were not affected by the mulching materials. Marketable yield was 2,426 kg.10a$^{-1}$ in recycled E.V.A. film treatment, which was 6% greater than in clear P.E. film treatment.

  • PDF

The Influence of Materials for Surface Mulching on Soil Temperature and Vegetative Growth of Apple Nursery Trees (지표면 멀칭재료가 지온과 사과나무 묘목의 수체생육에 미치는 영향)

  • SaGong, Dong-Hoon;Lee, Su-Jin;Han, Su-Gon;Yoon, Tae-Myung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • This study was conducted to investigate the influence of different polyethylene film (P.E. film) for mulching on the changes in soil temperature and the production of good feathered apple nursery trees. M.9 rootstocks with stem diameter of 9.1~11.0 mm were planted in plots covered with different P.E. film (i.e., transparent P.E. film, black P.E. film, and bare soil as control). Three weeks after planting, the rootstocks were veneer grafted with 'Sinano Sweet' apple cultivar. In the middle of June, BA was sprayed to nursery for inducing feathering during the growing season. The soil temperature of the control was higher than air temperature by about $0.7^{\circ}C$ from mid April to early October, and that of P.E. film mulching was about $1{\sim}5^{\circ}C$ higher than that of the control. The soil temperature under transparent P.E. film was about $2{\sim}3^{\circ}C$ higher than that under black P.E. film. The diurnal range of soil temperature under the black P. E. film was lowest among all treatments. The P.E. film mulching induced better tree growth and feathering than bare soil. Percentage of good feathering apple nursery of black P.E. film was highest among all treatments because the soil temperature unuder black P.E. film in the early growing season was higher than that of the control and the number of days when the maximum soil temperature was over $35^{\circ}C$ in the summer was lower than that under the transparent P.E. film.

Effects of Removing of Transparent Polyethylene Film on Garlic Growth, Yield and Weed Occurrence in double Layer mulching Cultivation (이중피복 마늘재배 시 투명P.E.필름 제거가 마늘 생육 및 수량과 잡초 발생에 미치는 영향)

  • Lee, Jae-Sun;Kim, In-Jae;Youn, Cheol-Ku;Ahn, Ki-Su;Kim, Ki-Hyen;Nam, Sang-Yong;Kim, Hong-Sig
    • Korean Journal of Organic Agriculture
    • /
    • v.21 no.3
    • /
    • pp.413-422
    • /
    • 2013
  • This experiment was conducted to clarify the effect of double layer mulching on reducing the labor required to weed control and Leaf sheath training of the garlic cultivation. Six mulching methods(non-mulching, transparent P.E., rice hull+transparent P.E., sawdust+transparent P.E., rice straw+transparent P.E., black P.E. film+ transparent P.E.) were used for the experiment, and transparent P.E film was removed on April 10. Weed occurrence was in the order of black P.E. film< transparent P.E

Preparation of Whey Powder-Based Biopolymer Films (유청분말을 이용한 생고분자 필름의 제조)

  • Cho, Seung-Yong;Park, Jang-Woo;Rhee, Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.1285-1294
    • /
    • 1998
  • Whey powder, a by-product of milk industry, was utilized to produce biopolymer film with the combination of film matrix supporting material, sodium caseinate. Biopolymer films were prepared from whey powder-sodium caseinate mixtures at several mixing ratios. The effects of pH, plasticizers and cross-linkers on tensile strength (TS) and elongation (E) of films were investigated. The films could be formed by use of whey powder up to 70%. As the whey powder content was increased, TS of the film decreased while E increased. Films containing more than 70% of whey powder could not be formed due to the stickiness of lactose in whey powder. The optimum pH of the film solution was found to be 10. Among the plasticizers tested, sorbitol was found to be the most effective plasticizer while glycerol was inadequate for the film. Tensile strengths of films containing $30{\sim}40%$ whey powder were higher than 10 MPa with relatively high E, when the films were plasticized with 30% (w/w) and 40% sorbitol. TSs of the relatively weak films containing $50{\sim}60%$ whey powders were improved by the addition of small amount of sodium citrate for 30% sorbitol plasticized films, and by the addition of sodium chloride for 40% sorbitol plasticized films. It was concluded that up to 70% of whey powder could be utilized to produce biopolymer films by adding sorbitol and cross linkers at pH 10.

  • PDF

Greenhouse Environment and Growth of Green Pepper (Capsicum annuum L.) in Greenhouse Covered with CEM BIO Film (CEM BIO Film 피복시설의 환경특성과 풋고추 생육)

  • Chun, Hee;Kim, Kyung-Je;Kwon, Young-Sam;Kim, Hyun-Hwan;Lee, Si-Young
    • Journal of Bio-Environment Control
    • /
    • v.9 no.3
    • /
    • pp.161-165
    • /
    • 2000
  • Spectroradiometric light transmittance from 300 to 1,100nm in the greenhouse covered with the CEM BIO polyethylene film was greater than that in the greenhouse covered with polyethylene film (control). As a whole, solar radiation transmittance into greenhouse was a half level, due to shades caused by double layer covering, frame and equipment. Net radiation energy emitted throughout surface of the greenhouse covered with CEM BIO polyethylene film was 5,424.5W.m$^{-2}$ , which was lower by 2.9% as compared to that of the greenhouse covered with polyethylene film. Photosynthetically active radiation from 400 to 700nm of the greenhouse covered with CEM BIO polyethylene film was 3,861.2W.m$^{-2}$ , which was higher by 3.8% as compared to hat of the greenhouse covered with polyethylene film. Accumulated minimum air temperature from Oct. 7, 1997 to Oct. 16, 1997 of the greenhouse covered with CEM BIO polyethylene film was 100.5$^{\circ}C$, which was higher by 2.5$^{\circ}C$ as compared to that of the greenhouse covered with polyethylene film. As results, height, stem diameter, leaf count, leaf area, fresh weight and dry weight of green pepper plants and canopy production structure measured at 30 days after transplanting were enhanced. Mean fruit weight n the greenhouse covered with CEM BIO polyethylene film was 11.28 g and 1.25 g greater as compared to that in the greenhouse covered with polyethylene film, due to increased fruit diameter and flesh thickness. Percent marketable fruits produced in the greenhouse covered with CEM BIO polyethylene film were 96.1%, and was greater by 2.7% thant that of the greenhouse covered with polyethylnee film due to decreased infection, sterility, severe curve and twisted fruits. The green pepper yield of the greenhouse covered with CEM BIO polyethylene film from Nov. 19, 1997 to Feb. 3, 1998 was greater by 974 kg per hectare than that of the greenhouse covered with polyethylene film, but the total fruit had no difference.

  • PDF

Effect of Permeability-Controlled Polyethylene Film on Extension of Shelf-life of Brined Baechu Cabbage (투과도 조절 폴리에틸렌 필름의 절임배추 보존기간 연장효과)

  • Kim, Young-Wook;Jeong, Ji-Kang;Lee, Sun-Mi;Kang, Soon-Ah;Lee, Dong-Sun;Kim, So-Hee;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.12
    • /
    • pp.1767-1772
    • /
    • 2009
  • Brined Baechu cabbages were packed with different films of high density polyethylene (HDPE), aluminium polyethylene (Al/PE), nylon polyamide (Ny/PE), low density polyethylene (LDPE) and permeability-controlled polyethylene (Mirafresh (MF), US patent No. 5972815), and then stored at 4${^{\circ}C}$ for 4 weeks. Changes in quality characteristics of pH, acidity, total bacteria counts, lactic acid bacteria counts, E. coli counts, texture and $O_2$ concentration were determined during the storage. The pH of brined Baechu cabbage packed with Mirafresh (MF) film was 6.25 after 4 weeks from initial pH of 6.80. The acidity of all brined Baechu cabbages increased, however, the increase of the cabbage in MF was the lowest. The levels of total bacteria, lactic acid bacteria and E. coli in the cabbages packed with MF were also lower than the other films. After 4 weeks, of all brined springiness Baechu cabbages decreased, but MF showed relatively high springiness. The $O_2$ concentrations by its permeation through MF were 0.35%-1.00% at 4-25${^{\circ}C}$ after 1 week. In conclusion, MF was found to be the most effective packaging film for brined Baechu cabbage to extend shelf-life.

Effect of Soil Mulching after Green Manual Crops on Control of Common Scab and Yield Characteristics of Fall Potato (녹비작물재배후 플라스틱필름 멀칭에 따른 가을감자의 더뎅이병 방제 및 수량특성 변화)

  • 송창길;강봉균
    • Korean Journal of Organic Agriculture
    • /
    • v.8 no.3
    • /
    • pp.99-109
    • /
    • 2000
  • This experiment was conducted to investigate the changes of rate of infected common scab and yield characteristics of fall potato(Solanum tuberosum L.) where green manual crops had been previously cultivated, crushed and tilled and P\ulcornerE transparent vinyl film had been mulched and tunneled to solar heating of soil from May 21. 1998 to July 28. 1998. The total yields of green manual crops which had been previousely cultivated were as followed order : pioneer 855F(64.3MT/ha), soybean(25.0MT/ha), red clover and orchardgrass. The average below-ground temperature at the depths of 5, 10 and 20cm were 54, 45 and 44$^{\circ}C$ during the mulching period, respectively The rate of infected area per potato tuber of common scab decreased by solar heating the soils with mulching after the soybean and red clover cultivation as with previous croppings. Plant height, SPAD(soil plant analysis development) reading, fresh weight of stems, and fall potato's tuber yields tended to increase by the cultivation of green manual crops and mulching of P\ulcornerE film. Fall potato's tuber yields were remarkably affected in the plot of soybean, red clover and pioneer 855F+cultivation of fall potato. T-N, K and Ca contents of fall potato(stem and tuber) also tended to increase by the cultivation of green manual crops and mulching of P\ulcornerE film. T-N, K and Ca contents of soil tended to increase after the cultivation of green manual crops and mulching of P\ulcornerE film and then reduced to contents of soil before green manual planting after potato harvesting.

  • PDF

Mechanical and Barrier Properties of Soybean Curd Residue Protein Films (비지 단백질로 제조한 가식성필름의 기계적 및 물질투과특성)

  • Cho, Seung-Yong;Park, Jang-Woo;Rhee, Chul
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.5 no.2
    • /
    • pp.9-16
    • /
    • 1999
  • Edible films were prepared from proteins extracted from soybean curd residue by alkaline extraction and isoelectric precipitation. Effects of film forming solution pH and plasticizers on mechanical and barrier properties of edible films were studied. films were formed within pH $7{\sim}11$ with tensile strength (TS) of $2.9{\sim}3.3$ MPa. Films produced under pH 10 had the highest TS and Elongation (E) (3.3 MPa and 60.1%) but no significant difference was observed among water vapor permeabilities (WVP) of film. Glycerol, sorbitol and its mixture (1:1, w/w) were added as plasticizers. The concentration and mixing ratio of plasticizers also affected the TS, E and WVP of films. TS of films decreased from 15.0 MPa to 2.9 MPa as plasticizer concentration increased from 0.4 to 0.8 g plasticizer/g protein. At a plasticizer concentration, the highest TS was observed when sorbitol was used whereas the highest E was measured when mixture of glycerol and sorbitol was used as plasticizer WVP of films increased as the plasticizer concentration increased. Films plasticized with glycerol showed the highest WVP among the films with the same plasticizer concentrations. Edible films prepared from soybean curd residue protein showed very low oxygen permeabilities ($29.5{\sim}61.1aL{\cdot}m/m^2{\cdot}s{\cdot}Pa$) and oil resistance at all plasticizer concentration level tested.

  • PDF

Comparison of Environmental Control Characteristics of High-barrier Films for Sealed Packaging of Cultural Heritage Objects (문화재 밀폐 포장용 고차단성 필름의 보존환경 제어 특성 비교)

  • Jeong, Jaeung;Park, Insik;Huh, Ilkwon
    • Conservation Science in Museum
    • /
    • v.16
    • /
    • pp.96-113
    • /
    • 2015
  • High-barrier films are used to store cultural heritage objects in a safe environment sealed from oxygen and moisture. One of the high-barrier films use populary E manufactured by Japanese company M from the 1990's. However, this product has stayed in wide use, due to dearth of research on related subjects - including studies comparing it with other similar products-, in spite of the fact that high price information about its characteristics and environmental conditions is largely lacking. This study examines the characteristics of a number of high-barrier films with the goal to establish environmental standards for safer conservation of cultural heritage objects. E by the Japanese manufacturer M is compared with four other films; an electronics packaging films by a Korean firm, a film specially produced for the purposes of experiment in this study and a zipper bag-type film. Experiments were performed to compare the properties and gas blocking ability of the films by looking at their cross-section and measuring the thickness, tensile strength, elongation, absorbance of UV and visible light, yellowing and the permeability for oxygen and vapor. Based on these experiments, there are observed changes under different environmental conditions and depending on the length of use through temparature and humidification reproucing test. The results showed that while the high-barrier film by the Korean manufacturer was suitable for use as a packaging material for cultural heritage objects, the zipper bag-type film (P) was ill-adapted for this purpose. Based on the experiments reproducing the real-world environment, the length of useful life was also determined for each.

Modification of Soy Protein Film by Formaldehyde (Formaldehyde 처리에 의한 대두단백 필름의 물성 개선)

  • Rhim, Jong-Whan
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.372-378
    • /
    • 1998
  • Two types of formaldehyde-treated soy protein isolate (SPI) films, formaldehyde-incorporated and formaldehyde-adsorbed films, and control SPI films were prepared. Cross-linking effect of formaldehyde on selected film properties such as color, tensile strength (TS), elongation at break (E), water vapor permeability (WVP), and water solubility (WS) were determined. Physical properties of formaldehyde-incorporated films were not geneally different from those of control films, while almost all of those among formaldehyde-adsorbed films were significantly different. Through cross-linking development within formaldehyde-adsorbed films, WS decreased significantly (P<0.05) from 26.1% to 16.6%, and TS increased two times while E decreased two times compared with control films. This was caused by insolubilization and hardening of protein by cross-linking most likely attributed to the significant changes in properties of protein films reacted with formaldehyde.

  • PDF