• Title/Summary/Keyword: P. cepacia

Search Result 51, Processing Time 0.027 seconds

Species of Bacteria and Antimicrobial Susceptibility Isolated from Clinical Specimens in Jeon Buk Area (전북지역 임상가검물에서 분리된 세균의 종류와 항생제 감수성)

  • 황구연
    • Biomedical Science Letters
    • /
    • v.3 no.1
    • /
    • pp.55-67
    • /
    • 1997
  • Considering many problems caused by the abuse of antibiotics recently, the appearance of antibiotic resistance bacteria is believed to help the cure of patients greatly. From Jan. 1st, 1996 to Dec. 31, 1996, 6135 strains were examined after being asked of and seperated from the clinical pathology departments of general hospitals, and the isolation frequency of identified bacteria and the susceptibility of antibiotics showed the following result. 1. The isolation frequency of strains was Escherichia coli, 1134 strains (18.4%), Pseudomonas aeruginosa, 856 strains (13.9%), coagulase negative Staphylococcus, 793 strains (12.89%), Staphylococcus aureus, 555 strains (9.02%), B. cepacia, 421 strains (6.84%), Enterobacter cloacae, 366 strains (5.95%), Enterobacter faecalis (4.86%), and Klebsiella pneumonia, 220 strains (3.85%). 2. The isolation rate of specimen was urine, 1, 969 strains, wound 1, 104 strains, sputum 701 strains, blood 643 strains, vaginal swab, 342 strains, and eye discharge, 192 strains, 40% of urine strains were E. coli 18% of wound strains were B. cepacia, 43.7% of sputum were P. aeruginosa, and in blood strains there were Enterobacter cloacae (25.8%), coagulase negative Staphylococcus (19.6%), and P. aeruginosa (8.7%). 3. The result of antibiotics susceptibility showed that, among gram negative bacilli, P. aeruginoas had resistance in almost all antibiotics except ceftazidme imipenem. But B. cepacia, the same glucose non-fermentation gram negative bacilli had more than 90% of sensitivity in aztreonam, ceftazidime, ciproflxacin, piperacillin, trimethoprim/sulfa and had resistance in the others. Enterococcus faecalis showed more than 85% of sensitivity in penicillin-G, ampicillin, ciprofloxacin. 4. In the case of specimen antibiotics susceptibility, Enterobacter cloacae was lower in specimen isolated from blood than in those isolated from others and p. aeruginosa was low in specimen isolated from urine, which showed that there was difference in specimen antibiotics susceptibility. The result of this study shows that there happen many resisitances in antibiotics used frequently and some countermeasure is necessary because many bacteria began to show new resistance. Also it is desirable that the choice of antibiotics for infection diagnosis and its cure should be made after the inspection of antibiotics.

  • PDF

Purification and characteristics of the Polyvinyl Alcohol Oxidase from Pseucomonas cepacia G5Y (폴리비닐 말콜 분해균 Pseudomonas cepaia G5Y의 Polyvinyl alcohol oxidase 정제 및 특성)

  • 장대균;조윤래
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.2
    • /
    • pp.203-208
    • /
    • 1995
  • The Polyvinyl alcohol (PVA) oxidase is a key enzyme involved in degradation of PVA with PVA hydrolase. The PVA oxidase has been purified to homogeneity from the culture broth of PVA grown Pseudomonas cepacia G5Y strain by ammonium sulfate precipitation, DEAE-cellulose column chromatography, and Sephadex G-150 gel filtration. The molecular weight of the purified enzyme was estimated about 60, 000 daltons by SDS-polyacrylamid gel electrophoresis. The enzyme is most active at 45$\circ$C and at pH 8.5, and is stable below 55$\circ$C and between pH 6 and 9. The enzyme activity was strongly inhibited by Ag$^{2+}$ and Hg$^{2+}$.

  • PDF

Immunosuppressive Activity of Cepacidine A, a Novel Antifungal Antibiotic Produced by Pseudomonas cepacia

  • LEE, CHUL-HOON;JUNG-WOO SUH;YOUL-HEE CHO
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.672-674
    • /
    • 1999
  • Cepacidine A was first identified as a novel antifungal antibiotic which was isolated from the culture broth of Pseudomonas cepacia AF200l. It showed a potent in vitro antifungal activity against various pathogenic fungi, but did not show any activity against bacteria. Recently, the immunosuppressive action of cepacidine A was discovered using an in vitro screening system involving inhibition of the proliferation of murine lymphocytes stimulated by 2 mitogens, and also by in vivo mouse models involving inhibition of delayed type hypersensitivity and SRBC hemagglutination. Cepacidine A showed a significant activity of cellular immunosuppression (ED/sub 50/) at concentration levels of 1-3 ㎎/㎏, i.p.. Unfortunately, the delayed toxicity at a dose of above 3 ㎎/㎏ i.p. was apparent.

  • PDF

Co-inoculation of Burkholderia cepacia and Alcaligenes aquatilis enhances plant growth of maize (Zea mays) under green house and field condition

  • Pande, Amit;Pandey, Prashant;Kaushik, Suresh
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.2
    • /
    • pp.196-210
    • /
    • 2017
  • The synergistic effect on phosphate solubilization of single- and co-inoculation of two phosphate solubilizing bacteria, Burkholderia cepacia (C1) and Alcaligenes aquatilis (H6), was assessed in liquid medium and maize plants. Co-inoculation of two strains was found to release the highest content of soluble phosphorus (309.66 ?g/mL) into the medium, followed by single inoculation of B. cepacia (305.49 ?g/mL) and A. aquatilis strain (282.38 ?g/mL). Based on a plant growth promotion bioassay, co-inoculated maize seedlings showed significant increases in shoot height (75%), shoot fresh weight (93.10%), shoot dry weight (84.99%), root maximum length (55.95%), root fresh weight (66.66%), root dry weight (275%), and maximum leaf length (81.53%), compared to the uninoculated control. In a field experiment, co-inoculated maize seedlings showed significant increases in cob length (136.92%), number of grain/cob (46.68%), and grain weight (67.46%) over control. In addition, single inoculation of maize seedlings also showed improved result over control. However, there was no significant difference between single inoculation of either bacterial strains and co-inoculation of these two bacterial strains in terms of phosphate solubilization index, phosphorous release, pH of the media, and plant growth parameters. Thus, single inoculation and co-inoculation of these bacteria could be used as biofertilizer for improving maize growth and yield.

Burkholderia cepacia Complex Infection in a Cohort of Italian Patients with Cystic Fibrosis

  • Lambiase, Antonietta;Raia, Valeria;Stefani, Stefania;Sepe, Angela;Ferri, Pasqualina;Buonpensiero, Paolo;Rossano, Fabio;Pezzo, Mariassunta Del
    • Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.275-279
    • /
    • 2007
  • The aims of this study were to detect Burkholderia cepacia complex (Bcc) strains in a cohort of Cystic Fibrosis patients (n=276) and to characterize Bcc isolates by molecular techniques. The results showed that 11.23% of patients were infected by Bcc. Burkholderia cenocepacia lineage III-A was the most prevalent species (64.3%) and, of these, 10% was cblA positive and 50% esmR positive. Less than half of the strains were sensitive to ceftazidime, meropenem, piperacillin-tazobactam, and trimethoprim-sulfamethoxazole. About half of the strains (41%) had homogeneous profiles, suggesting cross-transmission. The infection by B. cenocepacia was associated to a high rate of mortality (p=0.01).

Characteristics of Heavy Metal Biosorption by Pseudomonas cepacia KH410 (Pseudomonas cepacia KH410의 중금속 흡착특성)

  • 박지원;김영희
    • Korean Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.197-203
    • /
    • 2001
  • An ubiquitous bacterium, Pseudomonar cepacia KH410 was isolated from fresh water plant root and identified. Adsorption of heavy metals of lead, cadmium and copper by this strain was investigated. Optimal conditions foradsorption was 1.0 dry g-biomass, at pH 4.0 and temperature of $40^{\circ}C$. Adsorption equilibrium reached max-imum after 120 min in 1000 mg/l metal solutions. The adsorption capacity (K) of lead was 5.6 times higher thancadmium and 4.0 times higher than that of copper. Adsorption of lead was applicable for Langmuir modelwhereas Freundlich model for cadmium and copper, respectively. Adsorption strength (1/n) of heavy metal ionswere in the order of lead>copper>cadmium. Uptake capacity of lead, cadmium and copper by dried cell was83.2,42.0,65.2 mg/g-biomass, respectively. Effective desorption was induced 0.1 M HCI for lead and 0.1 $HNO_3$ for cadmium and copper. Pretreatment to increase ion strength was the most effective with 0.1 M KOH.Uptake by immobilized cell was 77.8,58.5,71.2 mg/g-biomass for lead, cadmium and copper, respectively. Theimmobilized cell was more effective than ion exchange resin on removal of heavy metals in solution containinglight metals.

  • PDF

Effects of Lead, Copper and Cadmium on Pseudomonas cepacia KH410 Isolated from Freshwater Plant Root (담수식물 근계로부터 분리된 Pseudomonas cepacia KH410 균주에 대한 납, 구리, 카드뮴의 영향)

  • 김영희
    • Korean Journal of Microbiology
    • /
    • v.38 no.1
    • /
    • pp.26-30
    • /
    • 2002
  • A ubiquitous bacterium,Effects of Lead, Copper and Cadmium on Pseudomonas cepacia KH410 Isolated from Freshwater Plant Root was isolated from freshwater plant root and interactions of lead, copper and cadmium with this strain was studied. Mass production of dry cell weight 2.72 g-DCW/ι-medium was obtained by cultivation in a nutrient medium containing 1% yeast extract, 1% soytone and 0.5% NaCl, pH 7.0, at temperature of 28℃ for 24 hrs under aeration. The mass of dry cell produced after exposure with 100 mg/ι of heavy metal was 1.98 g/ι for lead, 1.58 g/ι for copper and 0.20 g/ι for cadmium, respectively. The minimal inhibitory concentrations (MIC) for each heavy metal was 1.3 mM for lead,0.8 mM for copper and 0.4 mM fur cadmium, respectively. Cell aggregation occurred by each heavy metal exposure was observed from 1 day to 4 days by an optical microscope. Entrapment, precipitation effects on cell by heavy metals between 10 min and two hours were examined by an electron microscopy. Cadmium appeared to be the most toxic on cells and the order of toxicity was cadmium>copper>lead.

Biological and Physico-chemical Properties of Antifungal Cyclic Lipopeptides Produced by Pseudomonas cepacia Strains (Pseudomonas cepacia 균주가 생산하는 항진균성 Cyclic Lipopeptide의 생물학적 및 물리 화학적 특성)

  • Kim, Sung-Ho;Lee, Min-Woong
    • The Korean Journal of Mycology
    • /
    • v.24 no.4 s.79
    • /
    • pp.310-321
    • /
    • 1996
  • Five strains AF027, AF069, AF2001, AF2011 and SD02 of Pseudomonas cepacia were isolated from soil, and the antifungal cyclic lipopeptides(CLP) i.e, CLP027A, CLP069A, Cepacidine A, CLP2011A and CLP02A were produced from each strains, respectively. Nitrogen and carbon sources in media were proved to be important factors for the production of CLP and among them, polypeptone-S, glucose and fructose were the most effective. It appeared that compounds CLP027A and CLP069A were identical with Cepacidine A and Xylocandine A, respectively. contain aspartic acid as amino acid component, are differentiated from Xylocandine A containing asparagine. Although molecular weight, amino acid composition and UV spectrum of CLP2011A and CLP02A are same with those of Cepacidine A, it is postulated that these compounds are not identical with Cepacidine A when the antifungal spectra and antifungal activity were compared to those of Cepacidine A.

  • PDF

Biocontrol of Late Blight (Phytophthora capsici) Disease and Growth Promotion of Pepper by Burkholderia cepacia MPC-7

  • Sopheareth, Mao;Chan, Sarun;Naing, Kyaw Wai;Lee, Yong Seong;Hyun, Hae Nam;Kim, Young Cheol;Kim, Kil Yong
    • The Plant Pathology Journal
    • /
    • v.29 no.1
    • /
    • pp.67-76
    • /
    • 2013
  • A chitinolytic bacterial strain having strong antifungal activity was isolated and identified as Burkholderia cepacia MPC-7 based on 16S rRNA gene analysis. MPC-7 solubilized insoluble phosphorous in hydroxyapatite agar media. It produced gluconic acid and 2-keto-gluconic acid related to the decrease in pH of broth culture. The antagonist produced benzoic acid (BA) and phenylacetic acid (PA). The authentic compounds, BA and PA, showed a broad spectrum of antimicrobial activity against yeast, several bacterial and fungal pathogens in vitro. To demonstrate the biocontrol efficiency of MPC-7 on late blight disease caused by Phyto-phthora capsici, pepper plants in pot trials were treated with modified medium only (M), M plus zoospore inoculation (MP), MPC-7 cultured broth (B) and B plus zoospore inoculation (BP). With the sudden increase in root mortality, plants in MP wilted as early as five days after pathogen inoculation. However, plant in BP did not show any symptom of wilting until five days. Root mortality in BP was markedly reduced for as much as 50%. Plants in B had higher dry weight, P concentration in root, and larger leaf area compared to those in M and MP. These results suggested that B. cepacia MPC-7 should be considered as a candidate for the biological fertilizer as well as antimicrobial agent for pepper plants.