• Title/Summary/Keyword: P-waves

Search Result 472, Processing Time 0.024 seconds

Retrieval of Spherical Ocean Wave Parameters Using RADARSAT-2 SAR Sensor Observed at Chukk, Micronesia

  • Chaturvedi, Sudhir Kumar;Yang, Chan-Su;Song, Jung-Hwan;Ouchi, Kazuo;Shanmugam, P.
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.213-223
    • /
    • 2011
  • The purpose of this study is to estimate the spherical wave parameters that appears in synthetic aperture radar (SAR) image acquired over the coast of Chukk, Micronesia. The retrieval of ocean wave parameters consists of two main stages: the first is to determine the dominant wavelengths by Fast Fourier Transform (FFT) over 16 sub-image areas and the second is to estimate wave slopes and heights using dispersion relationship under various water wave conditions. It is assumed that the spherical waves are linear and progressive. These type of waves have the range and azimuth components traveling in radial directions. The azimuth travelling waves are more affected by the velocity bunching mechanism and it is difficult to estimate the wave parameters for these affected areas in SAR imagery. In order to compensate these effects, the velocity bunching ratio (VBR) based on modulation transfer function (MTF) was compared with the intensity ratio for neighbor area in the radial direction in order to assign the spherical wave properties for azimuthally travelling waves. Dispersion relation provides the good estimates for the wave heights for all the selected sub-image areas in the range of 1m to 2m. VBR based on MTF was found to be 0.78 at wave height of 1.36m, while the intensity-based VBR was 0.69 which corresponds to the height of 1.75m. It can be said that the velocity bunching accounts for azimuthally travelling spherical waves and the difference results from the sea-bottom effects.

A Study on the Effects of Electromagnetic Wave on Human Body - The Variation of Electroencephalogram by Blocking Electromagnetic Wave Materials and Aural Stimuli - (전자파가 인체에 미치는 영향 - 전자파 차폐소재와 청각자극에 나타난 뇌파전위의 변화 -)

  • Lee, Su-Jeong;Lee, Tae-Il
    • Fashion & Textile Research Journal
    • /
    • v.6 no.4
    • /
    • pp.503-510
    • /
    • 2004
  • The study is one of fundamental researches for the development of future smart clothing and textile products with blocking properties from electromagnetic waves by analyzing human physical symptoms in using electromagnetic products in such an environments. Among various textiles in the experiment, nano silver has shown the best blocking performance from electromagnetic waves, which decreases depending on the distance. The power spectrum distribution and the incidence of electroencephalogram between blocking materials and aural stimuli has shown that, ${\beta}$, wave appeared to be active in all channels except for $T_4$, whereas all waves appeared with processed materials and especially with nano silver silk(NSS), ${\alpha}$, ${\beta}$, ${\theta}$, ${\gamma}$ waves appeared active in all regions. As for the brain mapping of ${\alpha}$ wave according to time, there found a strong activity in $P_3$, $P_4$ of the parietal lobe, with all materials on all time regions. With silk nylon metal(SNM) and NSS, it appeared strong in $F_3$, $F_4$ as well. As for ${\beta}$, wave, the activity appeared strong in frontal lobe before 7min. 30sec, where it tends to diminish abruptly in 7min. 30sec. to 13min. 30sec. region. After 13min., it regained gradually. With NSS, it appeared strong in all areas except for the farthest $T_4$. The appearance of ${\nu}$ wave can be deduced as it can affect human body with its toxic property while the silver particles become nano-sized. Therefore, the study conducted with human participants requires a proper particle size of it which would not penetrate cellular tissues and a proper binder and binding treatment for it, to prevent the physical fatigues and the potential diseases. However, it is highly required for back-up researches to verify various aspects in applying nano silver to textile products.

A Study on the Wave Generating Characteristics of the Multi-directional Irregular Wave Basin (다방향불규칙파 조파수조의 조파특성에 관한 연구)

  • SOHN Byung-Kyu;RYU Cheong-Ro
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.6
    • /
    • pp.705-712
    • /
    • 2001
  • It is of great importance to represent the directional ocean waves in a laboratory basin for hydraulic model tests. The directional ocean waves can be expressed as a linear superposition of a large number of component waves with different frequencies and propagating directions. The aim of the study is to check the wave generating characteristics by serpent-type wave generating system in PKNU (Pukyong National University) which is composed of 10 piston-type wave generators. In the experiment, spatial variation of irregular wave heights and propagating angles are measured in the multi-directional wave maker basin. Target wave directional spectrum is reproduced in the area of multi-directional wave maker basin. The directional spreading of the generated waves varied spacially in the basin. They differed from target spectrum as the measurement point becomes far from the center line normal to the generator face, The effective generation area where that target can be reproduced is limited to the triangular area attached the generator face. According to the results, it is emphasized that the effective experiment area in the basin considered wave generator characteristics should be determined in consideration of experimental conditions including structural shapes, water depth, wave directionality etc.

  • PDF

Analysis of Simultaneous Generation Mechanism of P/S Waves with the PZT Piezoelectric Ceramics (PZT압전 세라믹스의 종$\cdot$횡파 동시 발생 기구의 해석)

  • Kim, Yeon-Bo;Roh, Yong-Rae;Nam, Hyo-Duk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.73-79
    • /
    • 1995
  • Most of conventional ultrasonic transducers are constructed to generate either longitudinal or shear waves, but not both of them. We investigated the mechanism of dual mode transducers that generates both of the longitudinal and shear waves simultaneously with a single PZT element. A piezoelectric ceramic PZT has the hexagonal 6mm crystal symmetry, after poling. We studied the performance of a PZT element as a function of its rotation angle so that its efficiency is optimized to excite the two waves equally strongly. The results are verified by checking the impedance variation of the element with Finite Element Methods, and checking the wave form by pulse-echo test simulation. Validity of the theoretical calculation is verified through experiments.

  • PDF

Nearshore waves and longshore sediment transport along Rameshwaram Island off the east coast of India

  • Gowthaman, Rajamanickam;Kumar, V. Sanil;Dwarakish, Gowdagere Siddaramaish;Shanas, P.R.;Jena, Basanta Kumar;Singh, Jai
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.6
    • /
    • pp.939-950
    • /
    • 2015
  • Wave-induced Longshore Sediment Transport (LST) play an important role in the dynamics of the Dhanushkodi sandspit located southeast of Rameshwaram. The LST along the Dhanushkodi coast is studied based on data collected simultaneously in Gulf of Mannar (GoM) and Palk Bay (PB) using directional waverider buoys. The numerical model REF/DIF1 was used to calculate the nearshore waves and the LST rate was estimated using three different formulae. The model validation was done based on the measured nearshore waves using InterOcean S4DW. Numerical model LITPACK was also used for simulating non-cohesive sediment transport and the LITLINE module was used to study the shoreline evolution over 5 years. Low net annual LST along PB (${\sim}0.01{\times}10^6m^3$) compared to the GoM region ($0.3{\times}10^6m^3$) were due to the weak waves. Accretion in the region led to growth of the Dhanushkodi sandspit by 65 m during the period 2010-2015.

Concrete compressive strength identification by impact-echo method

  • Hung, Chi-Che;Lin, Wei-Ting;Cheng, An;Pai, Kuang-Chih
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.49-56
    • /
    • 2017
  • A clear correlation exists between the compressive strength and elastic modulus of concrete. Unfortunately, determining the static elastic modulus requires destructive methods and determining the dynamic elastic modulus is greatly complicated by the shape and size of the specimens. This paper reports on a novel approach to the prediction of compressive strength in concrete cylinders using numerical calculations in conjunction with the impact-echo method. This non-destructive technique involves obtaining the speeds of P-waves and S-waves using correction factors through numerical calculation based on frequencies measured using the impact-echo method. This approach makes it possible to calculate the dynamic elastic modulus with relative ease, thereby enabling the prediction of compressive strength. Experiment results demonstrate the speed, convenience, and efficacy of the proposed method.

Hydrodynamics prediction of a ship in static and dynamic states

  • Du, P.;Ouahsine, A.;Sergent, P.
    • Coupled systems mechanics
    • /
    • v.7 no.2
    • /
    • pp.163-176
    • /
    • 2018
  • The ship hydrodynamics in static and dynamic states were investigated using 3-dimensional numerical simulations. The static case simulated a fixed ship, while the dynamic case considered a ship with free sinkage and trim using the mesh morphing technique. High speed was found to increase the wave elevation around the ship. Compared with the static case, the dynamic case seemed to generate higher waves near the bow and after the stern. The frictional resistance was found be to more dominant. However, the pressure resistance became gradually important with the increase of the ship speed. The trim and sinkage were also analyzed to characterize the ship hydrodynamics in the dynamic state.

Wave Analysis Method for Offshore Wind Power Design Suitable for Suitable for Ulsan Area

  • Woobeom Han;Kanghee Lee;Seungjae Lee
    • New & Renewable Energy
    • /
    • v.20 no.2
    • /
    • pp.2-16
    • /
    • 2024
  • Various loads induced by marine environmental conditions, such as waves, currents, and wind, are crucial for the operation and viability of offshore wind power (OWP) systems. In particular, waves have a significant impact on the stress and fatigue load of offshore structures, and highly reliable design parameters should be derived through extreme value analysis (EVA) techniques. In this study, extreme wave analyses were conducted with various Weibull distribution models to determine the reliable design parameters of an OWP system suitable for the Ulsan area. Forty-three years of long-term hindcast data generated by a numerical wave model were adopted as the analyses data, and the least-squares method was used to estimate the parameters of the distribution function for EVA. The inverse first-order reliability method was employed as the EVA technique. The obtained results were compared among themselves under the assumption that the marginal probability distributions were 2p, 3p, and exponentiated Weibull distributions.

Optimization of Classification of Local, Regional, and Teleseismic Earthquakes in Korean Peninsula Using Filter Bank (주파수 필터대역기술을 활용한 한반도의 근거리 및 원거리 지진 분류 최적화)

  • Lim, DoYoon;Ahn, Jae-Kwang;Lee, Jimin;Lee, Duk Kee
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.121-129
    • /
    • 2019
  • An Earthquake Early Warning (EEW) system is a technology that alerts people to an incoming earthquake by using P waves that are detected before the arrival of more severe seismic waves. P-wave analysis is therefore an important factor in the production of rapid seismic information as it can be used to quickly estimate the earthquake magnitude and epicenter through the amplitude and predominant period of the observed P-wave. However, when a large-magnitude teleseismic earthquake is observed in a local seismic network, the significantly attenuated P wave phases may be mischaracterized as belonging to a small-magnitude local earthquake in the initial analysis stage. Such a misanalysis may be sent to the public as a false alert, reducing the credibility of the EEW system and potentially causing economic losses for infrastructure and industrial facilities. Therefore, it is necessary to develop methods that reduce misanalysis. In this study, the possibility of seismic misclassifying teleseimic earthquakes as local events was reviewed using the Filter Bank method, which uses the attenuation characteristics of P waves to classify local and outside Korean peninsula (regional and teleseismic) events with filtered waveform depending on frequency and epicenter distance. The data used in our analysis were analyzed for maximum Pv values using 463 events with local magnitudes (2 < ML ≦ 3), 44 (3 < ML ≦ 4), 4 (4 < ML ≦ 5), 3 (ML > 5), and 89 outside Korean peninsula earthquakes recorded by the KMA seismic network. The results show that local and telesesimic earthquakes can be classified more accurately when combination of filtering bands of No. 3 (6-12 Hz) and No. 6 (0.75-1.5 Hz) is applied.