• Title/Summary/Keyword: P-waves

Search Result 468, Processing Time 0.023 seconds

Wave-Induced Soil Response around Submarine Pipeline (파랑작용에 의한 해저파이프라인 주변지반의 응답특성)

  • Hur, Dong-Soo;Kim, Chang-Hoon;Kim, Do-Sam
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.31-39
    • /
    • 2007
  • Recently, the nonlinear dynamic responses among waves, submarine pipeline and seabed have become a target of analyses for marine geotechnical and coastal engineers. Specifically, the velocity field around the submarine pipeline and the wave-induced responses of soil, such as stress and strain inside seabed, have been recognized as dominant factors in discussing the stability of submarine pipeline. The aim of this paper is to investigate nonlinear dynamic responses of soil in seabed, around submarine pipeline, under wave loading. In order to examine wave-induced soil responses, first, the calculation is conducted in the whole domain, including wave field and the seabed, using the VOF-FDM method. Then, velocities and pressures, which are obtained on the boundary between the wave field and the seabed, are used as the boundary condition to compute the wave-induced stress and strain inside seabed, using the poro-elastic FEM model, which is based on the approximation of the Biot's equations. Based on the numerical results, the characteristics of wave-induced soil responses around submarine pipeline are investigated, in detail, inrelation to relative separate distance of the submarine pipeline from seabed. Also, the velocity field around the submarine pipeline is discussed.

ECG Signal Compression using Feature Points based on Curvature (곡률을 이용한 특징점 기반 심전도 신호 압축)

  • Kim, Tae-Hun;Kim, Sung-Wan;Ryu, Chun-Ha;Yun, Byoung-Ju;Kim, Jeong-Hong;Choi, Byung-Jae;Park, Kil-Houm
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.624-630
    • /
    • 2010
  • As electrocardiogram(ECG) signals are generally sampled with a frequency of over 200Hz, a method to compress diagnostic information without losing data is required to store and transmit them efficiently. In this paper, an ECG signal compression method, which uses feature points based on curvature, is proposed. The feature points of P, Q, R, S, T waves, which are critical components of the ECG signal, have large curvature values compared to other vertexes. Thus, these vertexes are extracted with the proposed method, which uses local extremum of curvatures. Furthermore, in order to minimize reconstruction errors of the ECG signal, extra vertexes are added according to the iterative vertex selection method. Through the experimental results on the ECG signals from MIT-BIH Arrhythmia database, it is concluded that the vertexes selected by the proposed method preserve all feature points of the ECG signals. In addition, they are more efficient than the AZTEC(Amplitude Zone Time Epoch Coding) method.

On the Electrochemical Reduction of O, O-Dimethyl-O-(3-Methyl-4-Nitrophenyl)-Phosphorthioate (Fenitrothion) Pesticide in Acetonitrile Solution (Acetonitrile 용액중에서 살충제 O, O-Dimethyl-O-(3-Methyl-4-Nitrophenyl)-Phosphorothioate (Fenitrothion)의 전기화학적 환원)

  • Il-Kwang Kim;Youn-Geun Kim;Hyun-Ja Chun
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.186-194
    • /
    • 1988
  • The electrochemical reduction of O,O-dimethyl-O-(3-methyl-4-nitrophenyl)-phosphorothioate (Fenitrothion) has been studied in acetonitrile solution containing surfactant micelle by direct current (DC)-differential pulse (DP) polarography, cyclic voltammetry (CV) and controlled potential coulometry (CPC). The partially reversible electron transfer-chemical reaction(EC, EC mechanism) of fenitrothion reduction proceeded by four electron transfer to form O,O-dimethyl-O-(3-methyl-4-hydroxyaminophenyl)-phosphorothioate which undergoes single bond of the phosphorus atom and phenoxy group cleaves to give p-amino-m-cresol and dimethyl thiophosphinic acid as major product by two electron transfer-protonation at higher negative potential. The polarograpic reduction waves shown to suppressed due to inhibitory effect of sodium lauryl sulfate micelle solution and split up on selectivity of anionic micelle effect in two step at the first reduction peak.

  • PDF

On the Use of Standing Oblique Detonation Waves in a Shcramjet Combustor

  • Fusina, Giovanni;Sislian, Jean P.;Schwientek, Alexander O.;Parent, Bernard
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.671-686
    • /
    • 2004
  • The shock-induced combustion ramjet (shcramjet) is a hypersonic airbreathing propulsion concept which over-comes the drawbacks of the long, massive combustors present in the scramjet by using a standing oblique detonation wave (a coupled shock-combustion front) as a means of nearly instantaneous heat addition. A novel shcramjet combustor design that makes use of wedge-shaped flameholders to avoid detonation wave-wall interactions is proposed and analyzed with computational fluid dynamics (CFD) simulations in this study. The laminar, two-dimensional Navier-Stokes equations coupled with a non-equilibrium hydrogen-air combustion model based on chemical kinetics are used to represent the physical system. The equations are solved with the WARP (window-allocatable resolver for propulsion) CFD code (see: Parent, B. and Sislian, J. P., “The Use of Domain Decomposition in Accelerating the Convergence of Quasihyperbolic Systems”, J. of Comp. Physics, Vol. 179, No. 1,2002, pages 140-169). The solver was validated with experimental results found in the literature. A series of steady-state numerical simulations was conducted using WARP and it was deter-mined by means of thrust potential calculations that this combustor design is a viable one for shcramjet propulsion: assuming a shcramjet flight Mach number of twelve at an altitude of 36,000 m, the geometrical dimensions used for the combustor give rise to an operational range for combustor inlet Mach numbers between six and eight. Different shcramjet flight Mach numbers would require different combustor dimensions and hence a variable geometry system in or-der to be viable.

  • PDF

Analysis of the Multi-layered Soil on Monopile Foundation of Offshore Wind Turbine (해상 풍력 타워의 모노파일 기초에 대한 다층 지반 해석)

  • Kim, Nam-Hyeong;Go, Myeong-Jin
    • Journal of Navigation and Port Research
    • /
    • v.37 no.6
    • /
    • pp.655-662
    • /
    • 2013
  • Recently, by the problems owing to utilization of fossil fuel, various green energies receive attention. Wind, the impetus for the wind power generation as one of the green energies, is observed higher quality value in the offshore than onshore. Also, the development of offshore wind turbines is in the spotlight as alternative to solve the problems of onshore wind farm such as securing sites, noise, and electromagnetic waves, and to get efficient wind energy. Therefore, the many researches on offshore wind energy have been carried out. As wind towers are advanced to ocean, offshore wind towers have been enlarged. Thus, stability is required to endure wind force and wave force. In this study, the external forces act on the foundation in multi-layered are calculated by p-y relation.

Efficient 3D Acoustic Wave Propagation Modeling using a Cell-based Finite Difference Method (셀 기반 유한 차분법을 이용한 효율적인 3차원 음향파 파동 전파 모델링)

  • Park, Byeonggyeong;Ha, Wansoo
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.2
    • /
    • pp.56-61
    • /
    • 2019
  • In this paper, we studied efficient modeling strategies when we simulate the 3D time-domain acoustic wave propagation using a cell-based finite difference method which can handle the variations of both P-wave velocity and density. The standard finite difference method assigns physical properties such as velocities of elastic waves and density to grid points; on the other hand, the cell-based finite difference method assigns physical properties to cells between grid points. The cell-based finite difference method uses average physical properties of adjacent cells to calculate the finite difference equation centered at a grid point. This feature increases the computational cost of the cell-based finite difference method compared to the standard finite different method. In this study, we used additional memory to mitigate the computational overburden and thus reduced the calculation time by more than 30 %. Furthermore, we were able to enhance the performance of the modeling on several media with limited density variations by using the cell-based and standard finite difference methods together.

Correlations between the Muscle Thickness of the Transverse Abdominis and the Multifidus Muscle with Spinal Alignment in College Students (대학생의 배가로근과 뭇갈래근 두께와 척추정렬간의 상관관계)

  • Lim, Jae-Heon
    • PNF and Movement
    • /
    • v.12 no.4
    • /
    • pp.243-248
    • /
    • 2014
  • Purpose: The transverse abdominis and themultifidus muscle are located in the core. They surround one's trunk and help in body stabilization. Specifically, they control spine articulation to maintain posture and balance. Therefore, weakened deep muscle in the trunk may cause spinal malalignment. This study aims to compare the correlation between the thickness of the transverse abdominis and the multifidus muscle and the spine alignment among college students in their 20s. Methods: This study measured the thickness of the transverse abdominis and the multifidus muscle of 42 healthy college students in their 20s using ultrasonic waves. The thickness of the muscle was measured for the length of the cross-section except for fascia. The thickness of the left and right muscles was measured, and the mean value was calculated. As the thickness of the transverse abdominis can increase because of pressure during exhalation, it was measured at the last moment of exhalation. Spinal alignment was measured by the kyphosis angle, lordosis angle, pelvic tilt, trunk inclination, lateral deviation, trunk imbalance, and surface rotation using Formetric III, which is a three-dimensional imaging equipment. They were measured for three times, and the mean values were calculated. The general characteristics of the subjects were analyzed using descriptive statistics. The correlations between each factor were analyzed using Pearson's correlation analysis. Results: The transverse abdominis showed asignificant correlation with trunk inclination (p<.05). The multifidus muscle showed a significant positive correlation with pelvic tilt and a negative correlation with surface rotation (p<.05). Conclusion: The thickness of transverse abdominis and the multifidus muscle appears to influence spinal alignment. Specifically, the multifidus muscle, which plays an important role on the sagittal plane, influences surface rotation, thus making it an important muscle for scoliosis patients. Therefore, a strengthening training program for the transverse abdominis and the multifidus muscle is necessary according to specific purposes among adults with spinal malalignment.

Implementation of portable WiFi extender using Raspberry Pi (라즈베리파이를 이용한 이동형 와이파이 확장기 구현)

  • Jung, Bokrae
    • Journal of Industrial Convergence
    • /
    • v.20 no.1
    • /
    • pp.63-68
    • /
    • 2022
  • In schools and corporate buildings, public WiFi Access Points are installed on the ceilings of hallways. In the case of an architectural structure in which a WiFi signal enters through a steel door made of a material with high signal attenuation, Internet connection is frequently cut off or fails when the door is closed. To solve this problem, our research implements an economical and portable WiFi extender using a Raspberry Pi and an auxiliary battery. Commercially available WiFi extenders have limitations in the location where the power plug is located, and WiFi extension using the WiFi hotspot function of an Android smartphone is possible only in some high-end models. However, because the proposed device can be installed at the position where the Wi-Fi reception signal is the best inside the door, the WiFi range can be extended while minimizing the possibility of damage to the original signal. Experimental results show that it is possible to eliminate the shadows of radio waves and to provide Internet services in the office when the door is closed, to the extent that web browsing and real-time video streaming for 720p are possible.

Effect of Functional Exercise Using Linear Ladder on EEG Activities in College Men (줄사다리를 이용한 기능적 운동이 남자대학생의 뇌파 활성에 미치는 영향)

  • Jung, Suk Yool;Lee, Hae Lim;Lee, Sung Ki
    • Journal of Naturopathy
    • /
    • v.11 no.2
    • /
    • pp.79-84
    • /
    • 2022
  • Background: Exercise influences the generation of brain cells through learning and experience in the process of acquiring motor skills and helps improve brain function. It is necessary to scientifically verify how brain wave activity, a method of analyzing brain function, affects movement. Purposes: We scientifically identify the positive effects on EEG activity when applying complex functional linear ladder movements in an appropriate environment. Methods: After recruiting 30 male university students, we divided them into a linear ladder exercise group, a treadmill exercise group, and a control group, and exercise was applied and measured repeatedly for ten weeks. Results: There was a statistically significant change between groups in the left prefrontal lobe of alpha waves when exercise was applied (p < .05). Conclusions: Although exercise has a positive effect on EEG, line ladder exercise, which applies a complex pattern and produces more leg movement, appears to have a better impact on brain function than traditional aerobic exercise.

A Study on the Improvement of Microseismic Monitoring Accuracy by Borehole 3-Component Measurement Field Experiments (시추공 3성분 계측 현장실험을 통한 미소지진 모니터링 정확도 향상 연구)

  • Kim, Jungyul;Kim, Yoosung;Yun, Jeumdong;Kwon, Sungil;Kwon, Hyongil;Park, Seongbin;Park, Juhyun
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • In order to improve the accuracy of microseismic epicenter location through the inversion techniques using P and S wave first arrivals, field experiments of microseismic monitoring were performed using borehole 3-component geophones. The direction of epicenter was estimated from the hodograms of P-wave first arrivals through the weight drop experiments in which the $\times$ component of 3-component geophone was aligned to the magnetic north. The picking of S wave first arrival was possible in the polarization filtered data even if S waves are difficult to be identified in raw data. The inversion technique using only P wave first arrival times can often converge to the local minimum when the initial values for epicenter are largely apart from the true epicenter, so that the correct solution can not be found. To solve this problem, the epicenter determination method using differences between P and S wave arrival times was used to estimate proper initial values of epicenter. The inversion result using only P-wave first arrival times which started from the estimated initial values showed the improved accuracy of the epicenter location.