• Title/Summary/Keyword: P-XRF

Search Result 115, Processing Time 0.025 seconds

A Study on the Conservation and Management of the Painting of Shamanistic Spirits in Chiseonggwang Buddha (치성광여래 무신도의 과학적 분석 및 보존처리 연구)

  • Lee, Hyun Jeong;Seo, Jeong Ho
    • Journal of Conservation Science
    • /
    • v.37 no.6
    • /
    • pp.712-722
    • /
    • 2021
  • This study presents a method for conserving shamanistic spirits in Chiseonggwang Buddha. Scientific investigation has revealed that these spirits have been subject to degeneration as a result of severe exfoliation and pollution. The materials and preservation treatment techniques used in create these shamanistic spirits were identified through visual inspection and using appropriate scientific equipment. The different types of background paper, background material, and color pigments used in create the shamanistic spirits were analyzed using a colorimeter, stereoscopic microscope, and SEM-EDS techniques. The analysis revealed that the pulp paper was used as the background and synthetic fiber polyester as the background material. In addition, the study of the pigment revealed that the color components were all synthetic, except for red lead [Pb3O4] and oyster shell white [CaCO3]. Moreover, it was confirmed that the green pigment, identified as emerald green [Cu(C2H3O2)2.3Cu(AsO2)2], was a major component of shamanistic spirits in the late 19th century. The shamanistic spirits in Chiseonggwang Buddha were conserved by identifying raw materials and pigments through this detailed analysis.

Geochemical Characteristics of Stream Sediments in the Konyang Area (곤양지역 하상퇴적물에 대한 지구화학적 특성)

  • Park Yaung-Seog;Park Dae-Woo
    • Economic and Environmental Geology
    • /
    • v.39 no.3 s.178
    • /
    • pp.329-342
    • /
    • 2006
  • The purpose of this study is to determine the geochemical characteristics for the stream sediments in the Konyang area. So we can estimate the environment contamination and understand geochemical disaster. We collect the stream sediments samples by wet sieving along the primary channels and slowly dry the collected samples in the laboratory and grind to pass a 200mesh using an alumina mortar and pestle for chemical analysis. Mineralogy, major, trace and rare earth elements are determined by XRD, XRE, ICP-AES and NAA analysis methods. For geochemical characteristics on the geological groups of stream sediments, the studied area was grouped into quartz porphyry area, sedimentary rock area, anorthosite area and gneiss area. Contents of major elements for the stream sediments in the Konyang area were $SiO_2\;41.86{\sim}76.74\;wt.%,\;Al_{2}O_{3}\;9.92{\sim}30.00\;wt.%,\;Fe_{2}O_{3}\;2.74{\sim}12.68\;wt.%,\;CaO\;0.22{\sim}3.31\;wt.%,\;MgO\;0.34{\sim}3.97\;wt.%,\;K_{2}O\;0.75{\sim}0.93\;wt.%,\;Na_{2}O\;0.25{\sim}1.92\;wt.%,\;TiO_{2}\;0.40{\sim}3.00\;wt.%,\;MnO\;0.03{\sim}0.21\;wt.%,\;P_{2}O_{5}\;0.05{\sim}0.38\;wt.%$. The contents of trace and rare earth elements for the stream sediments were $Cu\;7{\sim}102\;ppm,\;Pb\;15{\sim}47\;ppm,\;Sr\;48{\sim}513\;ppm,\;V\;29{\sim}129\;ppm,\;Zr\;31{\sim}217\;ppm,\;Li\;14{\sim}94\;ppm,\;Co\;5.6{\sim}32.1\;ppm,\;Cr\;23{\sim}259\;ppm,\;Cs\;1.7{\sim}8.7\;ppm,\;Hf\;2.1{\sim}109.0\;ppm,\;Rb\;34{\sim}247\;ppm,\;Sc\;4.5{\sim}21.9\;ppm,\;Zn\;24{\sim}609\;ppm,\;Sb\;0.8{\sim}2.6\;ppm,\;Th\;3{\sim}213\;ppm,\;Ce\;22{\sim}1000\;ppm,\;Eu\;0.7{\sim}5.3\;ppm,\;Yb\;0.6{\sim}6.4\;ppm$. Generally, the contents of $Al_{2}O_{3}\;and\;SiO_2$ had a good relationships with each other in rocks but it had a bad relationships in stream sediments for this study area. The contents of $Fe_{2}O_3$, CaO, MnO and $P_{2}O_{5}$ had a good relationships with major and minor elements in stream sediments of this study area. The contents of Co and V in the stream sediments had a good relationships with other toxic elements.

Hydrothermal Alteration Related to Cretaceous Felsic Magmatism in the Seongsan Dickite Deposits, Korea; Estimation of Ore - Forming Temperature and aNa+/aK+ Ratio of the Hydrothermal Fluid (성산딕카이트광상에서의 백악기산성마그마티즘에 관련된 열수변질작용 ; 광상형성온도의 측정 및 열수용액의 aNa+/aK+)

  • Kim, In Joon
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.259-273
    • /
    • 1992
  • The Seongsan mine is one of the largest dickite deposits in the southwestern part of the Korean Peninsula. The main constithent minerals of the ore are dickite and quartz with accessory alunite, kaolinite and sericite. The geology around the Seongsan mine consists mainly of the late Cretaceous felsic volcanic rocks. In the studied area, these rocks make a synclinal structure with an axis of E-W direction plunging to the east. Most of the felsic volcanic rocks have undergone extensive hydrothermal alteration. The hydrothermally altered rocks can be classified into the following zones: Dickite, Dickite-Quartz, Quartz, Sericite, Albite and Chlorite zones, from the center to the margin of the alteration mass. Such zonal arrangement of altered rocks suggests that the country rocks, most of which are upper part of the rhyolite and welded tuff, were altered by strongly acid hydrothermal solutions. It is reasonable to consider that initial gas and solution containing $H_2S$ and other compounds were oxidized near the surface, and formed hydrothermal sulfuric acid solutions. The mineralogical and chemical changes of the altered rocks were investigated using various methods, and chemical composition of fifty-six samples of the altered rocks were obtained by wet chemical analysis and X.R.F. methods. On the basis of these analyses, it was found that some components such as $SiO_2$, $Al_2O_3$, $Fe_2O_3$, CaO, MgO, $K_2O$, $Na_2O$ and $TiO_2$ were mobilized considerably from the original rocks. The formation temperature of the deposits was estimated as higher than $200^{\circ}C$ from fluid inclusion study of samples taken from the Quartz zone. On the basis of the chemical composition data on rocks and minerals and estimated temperatures, the hydrothermal solutions responsible for the formation of the Seongsan dickite deposits were estimated to have the composition: $m_{K^+}=0.003$, $m_{Na^+}=0.097$, $m_{SiO_2(aq.)}=0.008$ and pH=5.0, here "m" represents the molality (mole/kg $H_2O$).

  • PDF

Comparative Analysis of Heavy Metal Contamination, Mineral Composition and Spectral Characteristics of White, Reddish Brown and Mixed Precipitates Occurring at Osip Stream Drainage, Gangwondo, South Korea (강원도 오십천 수계에 분포하는 백색침전물, 적갈색침전물 및 혼합침전물의 중금속 오염, 광물조성 및 분광학적 특성의 비교분석)

  • Lim, Jeong Hwa;Yu, Jaehyung;Shin, Ji Hye;Koh, Sang-Mo
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.13-28
    • /
    • 2019
  • This study analyzed precipitation environment, heavy metal contamination, and mineral composition of white, reddish brown and mixed precipitates occurring at the Osip stream drainage, Gangwondo. Furthermore, spectral characteristics of the precipitates associated with heavy metal contamination and mineral composition was investigated based on spectroscopic analysis. The pH range of the precipitates was 4.43-6.91 for white precipitates, 7.74-7.94 for reddish brown precipitates, and 7.59-7.9 for the mixed precipitates, respectively. XRF analysis revealed that these precipitates were contaminated with Ni, Cu, Zn, and As. The white precipitates showed high Al concentration compared to reddish brown precipitates as much as 3.3 times, and the reddish brown precipitates showed high Fe concentration compared to white precipitates as much as 15 times. XRD analysis identified that the mineral composition of the white participates was aluminocoquimbite, gibbsite, quartz, saponite, and illite, and that of reddish brown precipitates was aluminum isopropoxide, kaolinite, goethite, dolomite, pyrophyllite, magnetite, quartz, calcite, pyrope. The mineral composition of the mixed precipitates was quartz, albite, and calcite. The spectral characteristics of the precipitates was manifested by gibbsite, saponite, illite for white precipitates, goethite, kaolinite, pyrophyllite for reddish brown precipitates, and albite for the mixed precipitates, respectively. The spectral reflectance of the precipitates decreased with increase in heavy metal contamination, and absorption depth of the precipitates indicated that the heavy metal ions were adsorbed to saponite and illite for white precipitates, and goethite and magnetite for reddish brown precipitates.

Revealing the Paleo-ocean Environment of OSM-XX in the Western Pacific Magellan Seamount with Mineralogical and Geochemical Properties of Ferromanganese Crust (서태평양 마젤란해산군 OSM-XX 해저산 망간각의 광물학적, 지화학적 특성과 고해양 고환경 복원 연구)

  • Jinsub Park;Kiho Yang
    • Economic and Environmental Geology
    • /
    • v.56 no.1
    • /
    • pp.55-63
    • /
    • 2023
  • Variations in geochemical and mineralogical properties of the ferromanganese(Fe-Mn) crust reflect environmental changes. In the present study, geochemical and mineralogical analyses, including micro X-ray fluorescence and X-ray diffraction, were utilized to reconstruct the paleo-ocean environment of western Pacific Magellan seamount cluster. Samples of the Fe-Mn crust were collected using an epibenthic sledge from the open seamount XX (151° 51.12' 7.2" E and 16° 8.16' 9.6" N, 1557 meters below sea level) in the Western Pacific Magellan Seamount. According to the structure and phosphating status, the Fe-Mn crust of the OSM-XX can be divided into the following: phosphatizated (L4-L5), massive non-phosphatizated (L3), and porous non-phosphatizated (L1-L2) portions. All ferromanganese layers contain vernadite, and owing to the presence of carbonate fluorapatite (CFA), the phosphatizated portion (L4-L5) is rich in Ca and P. The massive non-phosphatizated section (L3) contains high Mn, Ni, and Co, whereas the porous non-phosphatizated portion (L1-L2), which comprises detrital quartz and feldspar, is rich in Fe. Variations in properties of the Fe-Mn crust from the OSM-XX reflect changes in the nearby marine environment. The formation of this crust started at approximately 51.87 Ma, and precipitation of the CFA during the global phosphatization event that occurred at approximately 36-32 Ma highlights an elevated sea level and low temperature during the associated period. The high Mn, Ni, and Co concentrations and elevated Mn/Fe ratios of samples from the massive phosphatizated portion indicate that the oxygen minimum zone (OMZ) was enhanced, and reducing conditions prevailed during the crust formation. The high Fe and low Mn/Fe ratios in the porous portion indicate a weak OMZ and dominantly oxidizing conditions. These data reflect environmental changes following the end of the Mi-1 glacial period in the Miocene-Oligocene boundary. Subsequently, Mn/Fe and Co/Mn ratios increased slightly in the outermost part of Fe-Mn crust because of the enhanced bottom current and OMZ associated with the continued cooling from approximately 9 Ma. However, the reduced carbonate dissolution rate in the Pacific Ocean from approximately 6 Ma decreased the growth rate of the Fe-Mn crust.