• Title/Summary/Keyword: P-OLED

Search Result 98, Processing Time 0.053 seconds

HMD 기술 현황 및 과제

  • Lee, Se-Jin
    • Broadcasting and Media Magazine
    • /
    • v.12 no.3
    • /
    • pp.93-99
    • /
    • 2007
  • HMD (Head Mounted Display)는 머리에 장착하거나 안경처럼 착용하여 사용하는 모니터의 종류를 총칭하며, 최근에는 FMD (Face Mounted Display)라고도 불려진다. HMD는 초기 헬멧 형태에서 최근 안경 형태로 점차 소형화 되고 있으며, HMD를 착용하여 마치 2m 앞 40 inch 이상의 화면을 시청하는 효과를 내는 기술 구현이 가능한 상태이다. 모바일 디스플레이 기기의 소형화를 실현시키는 HMD 기술은 다양한 미디어 기기와 결합하여 바로 눈앞에서 가상현실 및 영화를 효과적으로 즐길 수 있게 할 것이다. 2009년 세계 시장 규모가 약 2000억원으로 예상되는 HMD 시장은 5세대 영상을 구현하는 핵심 기술이 될 것이다.

Ar/$O_3$ PLASMA TREATMENT OF ITO SUBSTRATES FOR IMPROVEMENT OF OLED DEVICE PERFORMANCE (OLED 소자로의 응용을 위한 ITO 전극의 Ar/$O_3$ 플라즈마 표면개질)

  • Lem, J.S.;Kim, H.G.;Kim, Y.W.;Kang, D.H.;Jung, M.Y.;Kim, B.S.;Shin, P.K.;Lee, D.C
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1570-1572
    • /
    • 2004
  • OLED(organic light-emitting diode)소자에 사용되는 ITO(Indium-tin oxide)전극에 Ar/$O_3$ 플라즈마 표면처리 함으로써 ITO전극에 표면상태의 개선에 좋은 영향을 미치는 것으로 나타났다. 13.56MHZ RF 플라즈마 장치를 이용하여 Ar/$O_3$ 플라즈마 처리한 후 AFM(atomic force microscopy)측정을 통해 표면 morphologyjroughless를 분석하고, XPS(X-Ray Photoelectron Spectroscopy)분석을 통해 표면의 화학적 조성비 분석을 수행 하였다.

  • PDF

High performance top-emitting OLEDs with copper iodide-doped hole injection layer

  • Lee, Jae-Hyun;Leem, Dong-Seok;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.492-495
    • /
    • 2008
  • Efficient top-emitting organic light-emitting diodes were fabricated using copper iodide (CuI) doped NPB as a p-doped hole injection layer to improve hole injection from a silver bottom electrode. The enhanced hole injection is originated from the formation of the charge transfer complex between CuI and NPB. The devices result in high efficiency of 69 cd/A with almost Lambertian emission pattern.

  • PDF

Fabrication of OLED using low cost transparent conductive thin films (저가격 투명전극을 이용한 OLED의 제작)

  • Lee, B.J.;Shin, P.K.;You, D.H.;Ji, S.H.;Lee, N.H.;Park, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1281-1282
    • /
    • 2008
  • Low cost TCO(Transparent Conductive oxide) thin films were prepared by 3" DC/RF magnetron sputtering systems. For the AZO preparation processes a 99.99% AZO target (Zn: 98 wt.%, $Al_2O_3$: 2 wt.%) was used. In order to verify feasibility of the AZO thin films to organic light emitting device (OLED) application, test organic light emitting device was fabricated based on AZO as TCO, TPD as hole transporting layer (HTL), Alq3 as both emitting layer (EML) and electron transporting layer (ETL), and aluminium as cathode, where the both ITO and AZO surfaces were treated using $O_2$ RF plasma. The I-V characteristics of the AZO/TPD/Alq3/Al OLEDs were evaluated. As the results, the performance of the OLEDs with AZO as transparent conducting anode could be useable.

  • PDF

Development of a 14.1 inch Full Color AMOLED Display with Top Emission Structure

  • Jung, J.H.;Goh, J.C.;Choi, B.R.;Chai, C.C.;Kim, H.;Lee, S.P.;Sung, U.C.;Ko, C.S.;Kim, N.D.;Chung, K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.793-796
    • /
    • 2005
  • A structure and a design of device were developed to fabricate large-scale active matrix organic light-emitting diode (AMOLED) display with good color purity and high aperture ratio. With these technologies, we developed a full color 14.1 inch WXGA AMOLED display. For the integration of OLED on an active matrix a-Si TFT backplane, an efficient top emission OLED is essential since the TFT circuitry covers a large position of the pixel aperture. These technologies will enable up the OLED applications to larger size displays such as desktop monitors and TVs.

  • PDF

Enhanced Control of OLED Deposition Processes by OVPD(R)

  • Schwambera, M.;Meyer, N.;Keiper, D.;Heuken, M.;Hartmann, S.;Kowalsky, W.;Farahzadi, A.;Niyamakom, P.;Beigmohamadi, M.;Wuttig, M.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.336-339
    • /
    • 2007
  • The enhanced control of OLED deposition processes by Organic Vapor Phase Deposition $(OVPD^{(R)})$ is discussed. $OVPD^{(R)}$ opens a wide space of process control parameters. It allows the accurate and individual control of deposition layer properties like morphology and precise mixing of multi component layers (co-deposition) in comparison to conventional deposition manufacturing processes like e. g. VTE (vacuum thermal evaporation).

  • PDF

Advances in White OLED Tandem Architecture for Next Generation AMOLED Displays

  • Hatwar, T.K.;Spindler, J.P.;Vargas, J.R.;Helber, M.;Klubek, K.;Begley, W.;Itoh, M.;Hamer, J.;VanSlyke, S.A.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.231-234
    • /
    • 2007
  • Advances in white OLED tandem architecture are discussed.With these structures, stable and low-power full color AMOLED displays can be fabricated that are anticipated to be suitable for large area applications such as TVs. With a tandem architecture, efficient (24 cd/A) OLED structures with exceptional stability (${\sim}100,000\;h$ at $1000\;cd/m^2$) are described. In addition, excellent color gamut (>100% NTSC) can be attained by incorporating advanced color filters into the AMOLED backplane in a typical bottom-emitting configuration.

  • PDF

Luminescence Properties of the OLED with Oxygen Plasma Treated ITO (산소 플라즈마 표면 처리에 의한 OLED 소자의 발광특성)

  • Lim, J.S.;Lim, K.B.;Kim, Y.W.;Hwang, M.H.;Kang, D.H.;Kim, H.G.;Shin, P.K.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1878-1880
    • /
    • 2005
  • In this research, We investigated the effect of $O_2/O_3$ Plasma treatment of indium-tin oxide (ITO) surface on the performance of organic light emitting devices (OLEDs). The OLED had a structure of ITO/N,N'-diphenyl-N,N' -(3-methylphenyl)-1, 1'-biphenyl-4-4'-diamine (TPD)/Tris (8-hydroxyquinolinato) Aluminum $(Alq_3)/Al$. The ITO surface was treated by $O_2/O_3$ plasma with different RF power chamber pressure and exposure time. As a result, the emission efficiency of the OLEDs could be improved obviously.

  • PDF

Fabrication and Characterization of Blue OLED using TMP-BiP Host and DJNBD-1 Dopant (TMP-BiP 호스트와 DJNBD-1 도펀트를 이용한 청색 OLED의 제작과 특성평가)

  • Chang, Ji-Geun;Ahn, Jong-Myoung;Shin, Sang-Baie;Chang, Ho-Jung;Gong, Su-Choel;Shin, Hyun-Kwan;Gong, Myung-Sun;Lee, Chil-Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.2 s.19
    • /
    • pp.19-23
    • /
    • 2007
  • The blue emitting OLEDs using TMP-BiP[(4'-Benzoylferphenyl-4-yl)phenyl-methanone-Diethyl(biphenyl-4-ymethyl) phosphonate] host and DJNBD-1 dopant have been fabricated and characterized. In the device fabrication, 2-TNATA [4,4',4"-tris(2-naphthylphenyl-phenylamino)-triphenylamine] as a hole injection material and NPB [N,N'-bis(1-naphthyl)N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] as a hole transport material were deposited on the ITO(indium tin oxide)/glass substrate by vacuum thermal evaporation method. Followed by the deposition, blue color emission layer was deposited using TMP-BiP as a host material and DJNBD-1 as a dopant. Finally, small molecule OLEDs with structure of $ITO/2-TNATA/NPB/TMP-BiP:DJNBD-l/Alq_3/LiF/Al$ were obtained by in-situ deposition of $Alq_3$, LiF and Al as the electron transport material, electron injection material and cathode, respectively. The effect of dopant into host material of the blue OLEDs was studied. The blue OLEDs with DJNBD-1 dopant showed that the maximum current and luminance were found to be about 34 mA and $8110\;cd/m^2$ at 11 V, respectively. In addition, the color coordinate was x=0.17, y=0.17 in CIE color chart, and the peak emission wavelength was 440 nm. The maximum current efficiency of 2.15 cd/A at 7 V was obtained in this experiment.

  • PDF

Host effects on electrical conductivity of $ReO_3$ doped organic semiconductors

  • Lee, Jae-Hyun;Leem, Dong-Seok;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.346-349
    • /
    • 2009
  • We investigated the doping effects of $ReO_3$ in different p-type organic semiconductors on the formation of charge transfer complexes and the electrical conductivity by comparing the absorption in ultraviolet-visible-nearinfrared (UV-Vis-NIR) and the current density-voltage characteristics of the hole only devices, respectively. The large energy difference between the HOMO level of host and Fermi energy level of dopant (${\Delta}E$=$E_{HOHO,host}$ - $E_{F,dopant}$) gives higher concentration of CT complexes and enhanced conductivity.

  • PDF